Our routers need to remove the "internet" from the "internet of things" to stop DDOS

I frequently say that there is no “internet of things.” That’s a marketing phrase for now. You can’t go buy a “thing” and plug it into the “internet of things.” IoT is still interesting because underneath the name is a real revolution from the way that computing, sensing and communications are getting cheaper, smaller and using less power. New communications protocols are also doing interesting things.

We learned a lesson on Friday though, about why using the word “internet” is its own mistake. The internet — one of the world’s greatest inventions — was created as a network of networks where anything could talk to anything, and it was useful for this to happen. Later, for various reasons, we moved to putting most devices behind NATs and firewalls to diminish this vision, but the core idea remains.

Attackers on Friday made use of growing collection of low cost IoT devices with low security to mount a DDOS attack on DYN’s domain name servers, shutting off name lookup for some big sites. While not the only source of the attack, a lot of attention has come to certain Chinese brands of IP based security cameras and baby monitors. To make them easy to use, they are designed with very poor security, and as a result they can be hijacked and put into botnets to do DDOS — recruiting a million vulnerable computers to all overload some internet site or service at once.

Most applications for small embedded systems — the old and less catchy name of the “internet of things” — aren’t at all in line with the internet concept. They have no need or desire to be able to talk to the whole world the way your phone, laptop or web server do. They only need to talk to other local devices, and sometimes to cloud servers from their vendor. We are going to see billions of these devices connected to our networks in the coming years, perhaps hundreds of billions. They are going to be designed by thousands of vendors. They are going to be cheap and not that well made. They are not going to be secure, and little we can do will change that. Even efforts to make punishments for vendors of insecure devices won’t change that.

So here’s an alternative; a long term plan for our routers and gateways to take the internet out of IoT.

Our routers should understand that two different classes of devices will connect to them. The regular devices, like phones and laptops, should connect to the internet as we expect today. There should also be a way to know that the connecting devices does not want regular internet access, and not to give it. One way to do that is for the devices to know about this, and to convey how much access they need when they first connect. One proposal for this is my friend Eliot Lear’s MUD proposal. Unfortunately, we can’t count on devices to do this. We must limit stupid devices and old devices too.  read more »

Vendors push back on California Robocar regulations - plus Tesla and Apple news

California Hearings

Wednesday, California held hearings on the latest draft of their regulations. The new regulations heavily incorporate the new NHTSA guidelines released last month, and now incorporate language on the testing and deployment of unmanned vehicles.

The earlier regulations caused consternation because they correctly identified that nobody had sufficient understanding of unmanned vehicle operations to write regulations, but incorrectly proceeded to forbid those vehicles until later. Once you ban something, it’s very hard to un-ban it. The new approach does not ban the vehicles, but attempts instead to write regulations for them that are too premature.

Comment from developers of the vehicles reflected sentiment that all the regulations are premature. California worked together with NHTSA on their regulations, and incorporated them. In particular, while NHTSA’s regulations lay out a 15 point list of functional domains that creators of vehicles should certify, the federal regulations technically declare this certification to be optional. A vendor in submitting a report can explicitly state they decline to certify most of the items.

California suggests that this certification might be mandatory here. For all my criticism of NHTSA’s plan, they do have an understanding that it is still far too early to be writing detailed rules for vehicles that don’t yet exist, and left these avenues for change and disagreement within their regulations. The avenues are not great — I feel that vendors will be concerned that truly treating the regulations as voluntary will will be done at their peril — but at least they exist.

Several vendors also pointed out the serious problems with traditional regulatory timelines and the speed of development of computer technologies. The California regulations may require that a car be tested for a year before it is deployed. On the surface that sounds normal by old standards, but the reality of development is very different. Pretty much all the vendors I know are producing new builds of their vehicle software and testing them out on the roads the next day — with trained safety drivers behind the wheel. The software goes through extensive “regression testing,” running through every tricky situation the team has encountered anywhere, as well as simulated situations, but the safety driver is there to deal with any problem not found with that testing.

Vendors won’t release into production cars with only one night of testing, but neither can they wait a year. This is particularly true because in the early days of this technology, new problems will be found during deployment, and you want to get the fixes out on the road as quickly as is safe to do. An arbitrary timeline makes no sense.

This is just the start of the problems. While one may argue that it was always going to be hard for startups and tinkerers to develop these cars, these regulations (and the federal ones) put more nails in the coffin of the small innovator. The amount of bureaucracy, the size of the insurance bonds and many other factors will make it hard for teams the size of the DARPA challenge teams who kickstarted this technology and make it real to actually play in the game. The auto industry has a long history of allowing tinkerers to innovate, even at the cost of relaxing safety requirements applied to them. We may end up with a world where only the big players can play at all, and we know that this is generally not good at all for the pace of innovation.

Delivery Robots

The new regulations allowing unmanned vehicles might seem to open doors for delivery robots like we’re working on at Starship. Unfortunately they seem aimed primarily at large vehicles. Since California rules define the sidewalk as part of the street, these regulations might end up demanding a small, slow, light delivery robot still comply with the bulky Federal Motor Vehicle Safety Standards (which are meant for passenger cars) and is impossible without major exceptions being made. (More reading is needed to tell if this is truly how this will play out.)

Tesla says all future cars will have full sensor suite

Tesla has declared that all their future cars, including the lower cost Model 3, will include the full suite of radars, cameras and other sensors needed for self driving. That’s good news, though the Tesla sensor suite, lacking LIDAR, is not currently sufficient for a full self-driving car. Tesla is making a bet of sorts that by the time this becomes in play, cameras and radars will be sufficient to make an acceptably safe system. If not, they will have to stick with autopilot function on those cars. Since there is strong evidence that LIDAR will be inexpensive in a couple of years, I don’t believe anybody should plan to deploy their first (and riskiest) robocars without every sensor that’s at all affordable. Why make it less safe than you could just to save a few hundred dollars?

Today, Tesla can’t do that because no production low cost LIDAR is available. Most other teams are betting it will be. In the future, when cost becomes a bigger issue, vendors will decide to eliminate sensors based on cost.

Apple might have changed their plans

Apple hasn’t said anything official about their rumoured car project. All we know has come from leaks and from looking at who has been hired or who has departed. (I do know one secret thing about the Apple car — it will only work if you have a new iPhone.) Many rumours came out this week that Apple may have cancelled plans to actually make an Apple Car, and instead will take an approach more like Google — building the software and self-driving systems and letting others worry about car manufacture. That is a good strategy, so Apple is hardly out of the game, but it does mean it’s less likely the world will see a car with the particular Apple flair and marketing genius.

The relationship between powerful self-drive system developers (like Apple, Google and Uber) and car manufacturers will be an interesting one. Car makers are used to being in charge, owning the process and owning the customer. So are these hi-tech companies. But many companies will do “contract manufacturing” in auto. If Apple shows up with a purchase order for 100,000 cars to be built to their spec, there are many companies who will take the order, even if the high end Daimlers and Toyotas of the world won’t. So just as Apple doesn’t build the iPhone and gets Foxconn to do it, the fact that Apple will stick to the software systems doesn’t mean their design will not appear in a car.

Here is a summary of Apple car rumours.

Most voting is about the next election, not this one.

When people vote, what do they think it will accomplish? How does this affect how they vote, and how should it?

My apologies for more of this in a season when our social media are overwhelmed with politics, but in a lot of the postings I see about voting plans, I see different implicit views on just what the purpose of voting is. The main focus will be on the vote for US President.

The vast majority of people will vote in non-contested states. The logic is different in the “swing” states where all the campaign attention is.

In a non-contested state, there is essentially zero chance your vote will affect the result of the election. If you’re voting thinking you are exerting your small power to have a say in who wins, you are deluding yourself. Your vote does one, and only one thing — it changes the popular vote totals that are published and looked at by some people. You will change the total for the nation, your state, and some will even look at the totals in your region.

For minor party candidates, having a higher vote total — in particular reaching 5% — can also make a giant difference by giving access to federal campaign funding, which can make a serious difference in the funding level for those parties.

Voters should ask themselves, whose popular vote total do they want to increase? Some logic suggests that it makes more sense to vote for a minor party that you support. Not because they will win, but because you will create a larger proportionate increase in their total. One more vote for a Republican or Democrat will be barely noticed. One more vote for a minor party will also on its own make no difference, but proportionately it may be 10 times or more greater.

It’s for the next election, not this one

You don’t increase the popular vote totals to affect this election. You do it to affect the next one. Supporting a party makes other supporters realize they are not alone. It makes them just a bit more likely to join the cause, if they believe in it. Most voters don’t understand this “next election” principle, and so while a minor party remains too small to win or affect the election, they are less likely to support it.

This is how most movements go from being small to being large. When a protest movement is small, people are afraid to show their support. When they see a real crowd march in the square, they are now more likely to join the crowd and to let the world see how much support there really is.

As such, the particular platform planks and candidate quirks are almost entirely irrelevant for the non-swing voter. When you’re voting for the next election, you are really supporting only the party and its broad platform, or a basic overall impression of a candidate. I often see voters say, “I could not vote for a candidate who supports X” but they do not realize that is not what they are doing.

The minor parties are particularly bad at this. Most of them like to pretend they are just like major parties. They nominate candidates based on what they say or stand for. They create detailed party platforms. This is an error. A detailed platform is only a reason for people to vote against you. Detailed platforms are only for candidates who might actually have a shot at implementing their platform. Minor party candidates take it as gospel that they should never admit that they can’t win, even though any rational person knows it quite clearly. The reality is that you can know you can’t win the current election, but can more reasonably hope you can step higher and get within range of winning in a future election. Only when this happens should you act like a major party. You almost never see minor candidates say the truth: “Vote for me, not because you can make me win — you can’t — but to show and build support for the ideas of our party.”

I personally would much rather vote for somebody who said the truth like that, but perhaps I am unusual.

As I’ve said earlier, under this philosophy I recommend people in non-swing states consider minor parties that they want to boost. While it is commonly said that voting for a minor party is “throwing away your vote,” I believe it’s more likely that voting for a major party is actually throwing away the vote. The major party vote will not move any needles, not wake anybody up to the existence of these major parties. Because the minor party can’t win, you can vote for it simply to signal that there is support for its core ideas. This is something a voter should consider even when they still prefer the major party more. Most minor parties have bizarre and fringe policies that most voters would not support. Because they can’t win, this is not important. Should they ever get bigger, they will moderate those policies, or they will never make the jump to serious contender. Yesterday the John Oliver show did a funny skewering of minor party candidates but it entirely misses this point.

In addition, as minor political movements gain strength, they get noticed by the major parties. If the Greens got 10% of the vote, you can bet the Democrats would take notice, and try to court those voters. They don’t want the Greens to get so large that they become a potential “spoiler” in the swing states, so they will become slightly Green to prevent that. Once again, how you vote today affects the election of the future.

Polls are good too

Of course, even better is to express these desires in the polls. What you say in polls can affect this election, but primarily polls encourage other people who think like you to come out of the woodwork and express that view. Polls are stage one in the process of gaining critical mass — they lead to actual votes, which lead to more polls and so on. Of course, you only want to express support for a party in a poll if you really want this to happen. You should not lie, but you should not be afraid to show what you really support because somebody convinces you it’s wasted.

What if everybody voted this way?

Some people have said to me, “If everybody voted for minority views the vote might actually become real!” All remember the 2000 Florida election where Greens split out the Democrat vote and that resulted eventually in President Bush the 2nd. That was a swing state. People knew that would be close.

The truth is, the idea that you are voting for the next election is not widely accepted at present. Perhaps in the future it will be strong enough to change a state from non-contended to swing. But not today.

It’s also true that if you leave in a really non-swing state, like California, it is impossible your vote will make a difference. The truth is, if it ever got to the point where California was 50-50 about a choice like Clinton-Trump, then Trump already won long ago in the other states. Solid safe states can’t be the deciding state. (Rare events, like having the Republican candidate be a California governor can turn a safe state into a swing state, but not by surprise.) The only way the truly safe states ever can swing is in an election that’s already settled. The polls will tell you things long in advance.

Can this really work in the USA?

The biggest counter-argument to this approach I have seen is the suggestion that the USA is different, that the two party system is so entrenched that anything else is a waste of time.

In the rest of the world, 3rd parties are very common. They often are players in elections and often no party gets a majority and so coalitions must be formed, where the large party agrees to do some of the agenda of the smaller party to get their support in the coalition. Parties begin small and grow, as described above. Parties like the Greens are now a powerful minority force in Europe. Some countries, like Iceland, have never had a majority party.

The USA has been two-party for a long time, and the two powerful parties tend to make the rules so as to keep it that way. The above federal funding rule is just one example. In Presidential elections, the system requires a majority in the electoral college. A serious 3rd candidate could simply mean the election is sent to the House of Representatives (which is now long term Republican due to gerrymandering.)

There are some approaches that could cause minority political opinion to be able to do more in the USA. The best would be to move states away from plurality methods to multi-candidate voting such as Approval voting or a Condorcet method. These are no rules against a state doing that for any of their elections. They don’t because the two parties like keeping it as two parties. Efforts are underway in the states that have ballot propositions (bypassing the two parties) to make such changes.

What about major parties

This view also can affect your vote for major parties. For example, even though you know your vote in California will make no difference, you may want to make a tiny contribution to public and party perception of how much one party beat another. You may want to support the idea of a landslide or a “mandate.” You might also go the other way, and vote to punish your preferred party (for not listening to you or picking the wrong nominee) by voting for the other major party so that they don’t think they have a mandate. Sanders supporters who hated Clinton would be foolish to vote for Trump in a swing state, but in the safe states they could send this message if they desired. (It should be noted that this does run a very tiny risk of causing the popular vote to not match the college, which doesn’t stop your candidate from winning but sends a very strong message of dissatisfaction, and causes some lessening of support for the legitimacy of the process.)

What about in a swing state

This logic applies much less in swing states. There, your vote might change the state, and there is a very low chance it could swing the election. Now it is worth pointing out that this has never happened in a Presidential election. There’s never been an election where one vote made a difference. Unlike the non-contested states, there is still a chance of this happening. There, you will certainly vote for a major party if you want one, and you might even think twice about doing so even if you love a minor party, since your desire to pick the least of the two evils may exceed your desire to show support for your real values. Here, it is possible for minor parties to split the ballot, and in the view of the major parties, “spoil” the vote. This point is valid, the main error is in people applying this advice outside the swing states.

It is an interesting exercise to calculate just how much effect a single vote has even in a swing state. Again, the probability that a single state makes the difference in the election is already low in most elections, and the probability that this state’s result is within a single vote is also extremely low. On the other hand, if it does happen, then it happens for every voter in the state who voted for the winner — they all made the difference equally.

What is it worth to be able to make your candidate become President? In 2012 it was estimated that donors put in $2.6B, and that was not for a guarantee. For an ordinary individual, one could do research to figure out what it’s truly worth to each voter by trying to ask how much money they would take to accept the other candidate. That will vary from race to race and person to person, but for most people, it doesn’t make a huge difference in their lives who is President. They might feel they will make a bit more money with one, be a bit happier, get more things they care about done, but it’s not worth millions to anybody but business people who think it will majorly affect their business. Throwing out ballpark numbers, let’s assume it’s worth $100,000 to a given individual — and I think that’s actually very high, and of course I know it’s not just about money.

The problem is that the odds of the vote actually making the difference are low. Even a close race usually has a margin of thousands of votes, so the odds of a win-by-one are perhaps 1 in 10,000, and the odds that your state will be the decider are also small. After all, only a few elections have ever been decided by one close state, though Florida of 2000 is one of them and it’s in recent memory. If you judge your state has a 1 in 100 chance of being the decider, then this back of envelope calculation values your vote at just $1 — a one in 100,000 chance of something worth $100K.

One might argue that bumping the popular vote total is worth more. Unlike changing the result (which almost never happens) your vote always changes the popular vote totals, no matter which election or state you vote in. So while the value of that is small, the fact that it always happens bumps its expected value. Would adding 100,000 votes to the Green total in California be worth $100K to the Greens there? I would say it would be far more, suggesting a value much more than $1 per vote.

This may explain why voter turnout is so low.

Yikes - even Barack Obama wants to solve robocar "Trolley Problems" now

I had hoped I was done ranting about our obsession with what robocars will do in no-win “who do I hit?” situations, but this week, even Barack Obama in his interview with Wired opined on the issue, prompted by my friend Joi Ito from the MIT Media Lab. (The Media Lab recently ran a misleading exercise asking people to pretend they were a self-driving car deciding who to run over.)

I’ve written about the trouble with these problems and even proposed a solution but it seems there is still lots of need to revisit this. Let’s examine why this problem is definitely not important enough to merit the attention of the President or his regulators, and how it might even make the world more dangerous.

We are completely fascinated by this problem

Almost never do I give a robocar talk without somebody asking about this. Two nights ago, I attended another speaker’s talk and he got the question as his 2nd one. He looked at his watch and declared he had won a bet with himself about how quickly somebody would ask. It has become the #1 question in the mind of the public, and even Presidents.

It is not hard to understand why. Life or death issues are morbidly attractive to us, and the issue of machines making life or death decisions is doubly fascinating. It’s been the subject of academic debates and fiction for decades, and now it appears to be a real question. For those who love these sorts of issues, and even those who don’t, the pull is inescapable.

At the same time, even the biggest fan of these questions, stepping back a bit, would agree they are of only modest importance. They might not agree with the very low priority that I assign, but I don’t think anybody feels they are anywhere close to the #1 question out there. As such we must realize we are very poor at judging the importance of these problems. So each person who has not already done so needs to look at how much importance they assign, and put an automatic discount on this. This is hard to do. We are really terrible at statistics sometimes, and dealing with probabilities of risk. We worry much more about the risks of a terrorist attack on a plane flight than we do about the drive to the airport, but that’s entirely wrong. This is one of those situations, and while people are free to judge risks incorrectly, academics and regulators must not.

Academics call this the Law of triviality. A real world example is terrorism. The risk of that is very small, but we make immense efforts to prevent it and far smaller efforts to fight much larger risks.

These situations are quite rare, and we need data about how rare they are

In order to judge the importance of these risks, it would be great if we had real data. All traffic fatalities are documented in fairly good detail, as are many accidents. A worthwhile academic project would be to figure out just how frequent these incidents are. I suspect they are extremely infrequent, especially ones involving fatality. Right now fatalities happen about every 2 million hours of driving, and the majority of those are single car fatalities (with fatigue and alcohol among leading causes.) I have still yet to read a report of a fatality or serious injury that involved a driver having no escape, but the ability to choose what they hit with different choices leading to injuries for different people. I am not saying they don’t exist, but first examinations suggest they are quite rare. Probably hundreds of billions of miles, if not more, between them.

Those who want to claim they are important have the duty to show that they are more common than these intuitions suggest. Frankly, I think if there were accidents where the driver made a deliberate decision to run down one person to save another, or to hurt themselves to save another, this would be a fairly big human interest news story. Our fascination with this question demands it. Just how many lives would be really saved if cars made the “right” decision about who to hit in the tiny handful of accidents where they must hit somebody?

In addition, there are two broad classes of situations. In one, the accident is the fault of another party or cause, and in the other, it is the fault of the driver making the “who to hit” decision. In the former case, the law puts no blame on you for who you hit if forced into the situation by another driver. In the latter case, we have the unusual situation that a car is somehow out of control or making a major mistake and yet still has the ability to steer to hit the “right” target.

These situations will be much rarer for robocars

Unlike humans, robocars will drive conservatively and be designed to avoid failures. For example, in the MIT study, the scenario was often a car whose brakes had failed. That won’t happen to robocars — ever. I really mean never. Robocar designs now all commonly feature two redundant braking systems, because they can’t rely on a human pumping the hydraulics manually or pulling an emergency brake. In addition, every time they apply the brakes, they will be testing them, and at the first sign of any problem they will go in for repair. The same is true of the two redundant steering systems. Complete failure should be ridiculously unlikely.

The cars will not suddenly come upon a crosswalk full of people with no time to stop — they know where the crosswalks are and they won’t drive so fast as to not be able to stop for one. They will be also constantly measuring traction and road conditions to assure they don’t drive too fast for the road. They won’t go around blind corners at high speeds. They will have maps showing all known bottlenecks and construction zones. Ideally new construction zones will only get created after a worker has logged the zone on their mobile phone and the updates are pushed out to cars going that way, but if for some reason the workers don’t do that, the first car to encounter the anomaly will make sure all other cars know.

This does not mean the cars will be perfect, but they won’t be hitting people because they were reckless or had predictable mechanical failures. Their failures will be more strange, and also make it less likely the vehicle will have the ability to choose who to hit.

To be fair, robocars also introduce one other big difference. Humans can argue that they don’t have time to think through what they might do in a split-second accident decision. That’s why when they do hit things, we call them accidents. They clearly didn’t intend the result. Robocars do have the time to think about it, and their programmers, if demanded to by the law, have the time to think about it. Trolley problems demand the car be programmed to hit something deliberately. The impact will not be an accident, even if the cause was. This puts a much higher standard on the actions of the robocar. One could even argue it’s an unfair standard, which will delay deployment if we need to wait for it.

In spite of what people describe in scenarios, these cars won’t leave their right of way

It is often imagined an ethical robocar might veer into the oncoming lane or onto the sidewalk to hit a lesser target instead of a more vulnerable one in its path. That’s not impossible, but it’s pretty unlikely. For one, that’s super-duper illegal. I don’t see a company, unless forced to do so, programming a car to ever deliberately leave its right of way in order to hit somebody. It doesn’t matter if you save 3 school buses full of kids, deliberately killing anybody standing on the sidewalk sounds like a company-ruining move.

For one thing, developers just won’t put that much energy into making their car drive well on the sidewalk or in oncoming traffic. They should not put their energies there! This means the cars will not be well tested or designed when doing this. Humans are general thinkers, we can handle driving on the grass even though we have had little practice. Robots don’t quite work that way, even ones designed with machine learning.

This limits most of the situations to ones where you have a choice of targets within your right-of-way. And changing lanes is always more risky than staying in your lane, especially if there is something else in the lane you want to change to. Swerving if the other lane is clear makes sense, but swerving into an occupied lane is once again something that is going to be uncharted territory for the car.

By and large the law already has an answer

The vehicle code is quite detailed about who has right-of-way. In almost every accident, somebody didn’t have it and is the one at fault under the law. The first instinct for most programmers will be to have their car follow the law and stick to their ROW. To deliberately leave your ROW is a very risky move as outlined above. You might get criticized for running over jaywalkers when you could have veered onto the sidewalk, but the former won’t be punished by the law and the latter can be. If people don’t like the law, they should change the law.

The lesson of the Trolley problem is “you probably should not try to solve trolley problems.”

Ethicists point out correctly that Trolley problems may be academic exercises, but are worth investigating for what they teach. That’s true in the classroom. But look at what they teach! From a pure “save the most people” utilitarian standpoint, the answer is easy — switch the car onto the track to kill one in order to save 5. But most people don’t pick that answer, particularly in the “big man” version where you can push a big man standing with you on a bridge onto the tracks to stop the trolley and save the 5. The problem teaches us we feel much better about leaving things as they are than in overtly deciding to kill a bystander. What the academic exercise teaches us is that in the real world, we should not foist this problem on the developers.

If it’s rare and a no-win situation, do you have to solve it?

Trolley problems are philosophy class exercises to help academics discuss ethical and moral problems. They aren’t guides to real life. In the classic “trolley problem” we forget that none of it happens unless a truly evil person has tied people to a railway track. In reality, many would argue that the actors in a trolley problem are absolved of moral responsibility because the true blame is on the setting and its architect, not them. In philosophy class, we can still debate which situation is more or less moral, but they are all evil. These are “no win” situations, and in fact one of the purposes of the problems is they often describe situations where there is no clear right answer. All answers are wrong, and people disagree about which is most wrong.

If a situation is rare, and it takes effort to figure out which is the less wrong answer, and things will still be wrong after you do this even if you do it well, does it make sense to demand an answer at all? To individuals involved, yes, but not to society. The hard truth is that with 1.2 million auto fatalities a year — a number we all want to see go down greatly — it doesn’t matter that much to society whether, in a scenario that happens once every few years, you kill 2 people or 3 while arguing which choice was more moral. That’s because answering the question, and implementing the answer, have a cost.

Every life matters, but we regularly make decisions like this. We find things that are bad and rare, and we decide that below a certain risk threshold, we will not try to solve them unless the cost is truly zero. And here the cost is very far from zero. Because these are no-win situations and each choice is wrong, each choice comes with risk. You may work hard to pick the “right” choice and end up having others declare it wrong — all to make a very tiny improvement in safety.

At a minimum each solution will involve thought and programming, as well as emotional strain for those involved. It will involve legal review and in the new regulations, certification processes and documentation. All things that go into the decision must be recorded and justified. All of this is untrod legal ground making it even harder. In addition, no real scenario with match hypothetical situations exactly, so the software must apply to a range of situations and still do the intended thing (let alone the right thing) as the situation varies. This is not minor.

Nobody wants to solve it

In spite of the fascination these problems hold, coming up with “solutions” to these no-win situations are the last things developers want to do. In articles about these problems, we almost always see the statement, “Who should decide who the car will hit?” The answer is nobody wants to decide. The answer is almost surely wrong in the view of some. Nobody is going to get much satisfaction or any kudos for doing a good job, whatever that is. Combined with the rarity of these events compared to the many other problems on the table, solving ethical issues is very, very, very low on the priority list for most teams. Because developers and vendors don’t want to solve these questions and take the blame for those solutions, it makes more sense to ask policymakers to solve what needs to be solved. As Christophe von Hugo of Mercedes put it, “99% of our engineering work is to prevent these situations from happening at all.”

The cost of solving may be much higher than people estimate

People grossly underestimate how hard some of these problems will be to solve. Many of the situations I have seen proposed actually demand that cars develop entirely new capabilities that they don’t need except to solve these problems. In these cases, we are talking about serious cost, and delays to deployment if it is judged necessary to solve these problems. Since robocars are planned as a life-saving technology, each day of delay has serious consequences. Real people will be hurt because of these delays aimed at making a better decision in rare hypothetical situations.

Let’s consider some of the things I have seen:

  • Many situations involve counting the occupants of other cars, or counting pedestrians. Robocars don’t otherwise have to do this, nor can they easily do it. Today it doesn’t matter if there are 2 or 3 pedestrians — the only rule is not to hit any number of pedestrians. With low resolution LIDAR or radar, such counts are very difficult. Counts inside vehicles are even harder.
  • One scenario considers evaluating motorcyclists based on whether they are wearing helmets. I think this one is ridiculous, but if people take it seriously it is indeed serious. This is almost impossible to discern from a LIDAR image and can be challenging even with computer vision.
  • Some scenarios involve driving off cliffs or onto sidewalks or otherwise off the road. Most cars make heavy use of maps to drive, but they have no reason to make maps of off-road areas at the level of detail that goes into the roads.
  • More extreme scenarios compare things like children vs. adults, or school-buses vs. regular ones. Today’s robocars have no reason to tell these apart. And how do you tell a dwarf adult from a child? Full handling of these moral valuations requires human level perception in some cases.
  • Some suggestions have asked cars to compare levels of injury. Cars might be asked to judge the difference between a fatal impact and one that just breaks a leg.

These are just a few examples. A large fraction of the hypothetical situations I have seen demand some capability of the cars that they don’t have or don’t need to have just to drive safely.

The problem of course is there are those who say that one must not put cars on the road until the ethical dilemmas have been addressed. Not everybody says this but it’s a very common sentiment, and now the new regulations demand at least some evaluation of it. No matter how much the regulations might claim they are voluntary, this is a false claim, and not just because some states are already talking about making them more mandatory.

Once a duty of care has been suggested, especially by the government, you ignore it at your peril. Once you know the government — all the way to the President — wants you to solve something, then you must be afraid you will be asked “why didn’t you solve that one?” You have to come up with an answer to that, even with voluntary compliance.

The math on this is worth understanding. Robocars will be deployed slowly into society but that doesn’t matter for this calculation. If robocars are rare, they can prevent only a smaller number of accidents, but they will also encounter a correspondingly smaller number of trolley problems. What matters is how many trolley situations there are per fatality, and how many people you can save with better handling of those problems. If you get one trolley problem for every 1,000 or 10,000 fatalities, and robocars are having half the fatalities, the math very clearly says you should not accept any delay to work on these problems.

The court of public opinion

The real courts may or may not punish vendors for picking the wrong solution (or the default solution of staying in your lane) in no-win situations. Chances are there will be a greater fear of the court of public opinion. There is reason to fear the public would not react well if a vehicle could have made an obviously better outcome, particularly if the bad outcome involves children or highly vulnerable road users vs. adults and at-fault or protected road users.

Because of this I think that many companies will still try to solve some of these problems even if the law puts no duty on them. Those companies can evaluate the risk on their own and decide how best to mitigate it. That should be their decision.

For a long time, many people felt any robocar fatality would cause uproar in the public eye. To everybody’s surprise, the first Tesla autopilot deaths resulted in Tesla stock rising for 2 months, even with 3 different agencies doing investigations. While the reality of the Tesla is that the drivers bear much more responsibility than a full robocar would, the public isn’t very clear on that point, so the lack of reaction is astonishing. I suspect companies will discount this risk somewhat after this event.

This is a version 2 feature, not a version 1 feature

As noted, while humans make split-second “gut” decisions and we call the results accidents, robocars are much more intentional. If we demand they solve these problems, we ask something of them and their programmers that we don’t ask of human drivers. We want robocars to drive more safely than humans, but we also must accept that the first robocars to be deployed will only be a little better. The goal is to start saving lives and to get better and better at it as time goes by. We must consider the ethics of making the problem even harder on day one. Robocars will be superhuman in many ways, but primarily at doing the things humans do, only better. In the future, we should demand these cars meet an even higher standard than we put on people. But not today: The dawn of this technology is the wrong time to also demand entirely new capabilities for rare situations.

Performing to the best moral standards in rare situations is not something that belongs on the feature list for the first cars. Solving trolley situations well is in the “how do we make this perfect?” problem set, not the “how do we make this great?” set. It is important to remember how the perfect can be the enemy of the good and to distinguish between the two. Yes, it means accepting there are low chance that somebody could be hurt or die, but people are already being killed, in large numbers, by the human drivers we aim to replace.

So let’s solve trolley problems, but do it after we get the cars out on the road both saving lives and teaching us how to improve them further.

What about the fascination?

The over-fascination with this problem is a real thing even if the problem isn’t. Studies have displayed one interesting result after surveying people: When you ask people what a car should do for the good of society, they would want it to sacrifice its passenger to save multiple pedestrians, especially children. On the other hand if you ask people if they would buy a car that did that, far fewer said yes. As long as the problem is rare, there is no actual “good of society” priority; the real “good of society” comes from getting this technology deployed and driving safely as quickly as possible. Mercedes recently announced a much simpler strategy which does what people actually want, and got criticism for it. Their strategy is reasonable — they want to save the party they can be most sure of saving, namely the passengers. They note that they have very little reliable information on what will happen in other cars or who is in them, so they should focus not on a guess of what would save the most people, but what will surely save the people they know about.

What should we do?

I make the following concrete recommendations:

  1. We should do research to determine how frequent these problems are, how many have “obvious” answers and thus learn just how many fatalities and injuries might be prevented by better handling of these situations.
  2. We should remove all expectation on first generation vehicles that they put any effort into solving the rare ones, which may well be all of them.
  3. It should be made clear there is no duty of care to go to extraordinary lengths (including building new perception capabilities) to deal with sufficiently rare problems.
  4. Due to the public over-fascination, vendors may decide to declare their approaches to satisfy the public. Simple approaches should be encouraged, at in the early years of this technology, almost no answer should be “wrong.”
  5. For non-rare problems, governments should set up a system where developers/vendors can ask for rulings on the right behaviour from the policymakers, and limit the duty of care to following those rulings.
  6. As the technology matures, and new perception abilities come online, more discussion of these questions can be warranted. This belongs in car 2.0, not car 1.0.
  7. More focus at all levels should go into the real everyday ethical issues of robocars, such as roads where getting around requires regularly violating the law (speeding, aggression etc.) in the way all human users already do.
  8. People writing about these problems should emphasize how rare they are, and when doing artificial scenarios, recount how artificial they are. Because of the public’s fears and poor risk analysis, it is inappropriate to feed on those fears rather than be realistic.

The social networks could hold great political power due to GOTV. Should they?

The social networks have access (or more to the point can give their users access) to an unprecedented trove of information on political views and activities. Could this make a radical difference in affecting who actually shows up to vote, and thus decide the outcome of elections?

I’ve written before about how the biggest factor in US elections is the power of GOTV - Get Out the Vote. US Electoral turnout is so low — about 60% in Presidential elections and 40% in off-year — that the winner is determined by which side is able to convince more of their weak supporters to actually show up and vote. All those political ads you see are not going to make a Democrat vote Republican or vice versa, they are going to scare a weak supporter to actually show up. It’s much cheaper, in terms of votes per dollar (or volunteer hour) to bring in these weak supporters than it is to swing a swing voter.

The US voter turnout numbers are among the worst in the wealthy world. Much of this is blamed on the fact the US, unlike most other countries, has voter registration; effectively 2 step voting. Voter registration was originally implemented in the USA as a form of vote suppression, and it’s stuck with the country ever since. In almost all other countries, some agency is responsible for preparing a list of citizens and giving it to each polling place. There are people working to change that, but for now it’s the reality. Registration is about 75%, Presidential voting about 60%. (Turnout of registered voters is around 80%)

Scary negative ads are one thing, but one of the most powerful GOTV forces is social pressure. Republicans used this well under Karl Rove, working to make social groups like churches create peer pressure to vote. But let’s look at the sort of data sites like Facebook have or could have access to:

  • They can calculate a reasonably accurate estimate of your political leaning with modern AI tools and access to your status updates (where people talk politics) and your friend network, along with the usual geographic and demographic data
  • They can measure the strength of your political convictions through your updates
  • They can bring in the voter registration databases (which are public in most states, with political use allowed on the data. Commercial use is forbidden in a portion of states but this would not be commercial.)
  • In many cases, the voter registration data also reveals if you voted in prior elections
  • Your status updates and geographical check-ins and postings will reveal voting activity. Some sites (like Google) that have mobile apps with location sensing can detect visits to polling places. Of course, for the social site to aggregate and use this data for its own purposes would be a gross violation of many important privacy principles. But social networks don’t actually do (too many) things; instead they provide tools for their users to do things. As such, while Facebook should not attempt to detect and use political data about its users, it could give tools to its users that let them select subsets of their friends, based only on information that those friends overtly shared. On Facebook, you can enter the query, “My friends who like Donald Trump” and it will show you that list. They could also let you ask “My Friends who match me politically” if they wanted to provide that capability.

Now imagine more complex queries aimed specifically at GOTV, such as: “My friends who match me politically but are not scored as likely to vote” or “My friends who match me politically and are not registered to vote.” Possibly adding “Sorted by the closeness of our connection” which is something they already score.  read more »

NHTSA Regulations part 4: Crashes, Training, Certification, State Law, Operation, Validation and Autopilots

After my initial reactions and Overall Analysis here is a point by point consideration of second set of elements from NHTSA’s 15 point certification list for robocars. See my series for other articles or the first half of the list.


In this section, the remind vendors they still need to meet the same standards as regular cars do. We are not ready to start removing heavy passive safety systems just because the vehicles get in fewer crashes. In the future we might want to change that, as those systems can be 1/3 of the weight of a vehicle.

They also note that different seating configurations (like rear facing seats) need to protect as well. It’s already the case that rear facing seats will likely be better in forward collisions. Face-to-face seating may present some challenges in this environment, as it is less clear how to deploy the airbags. Taxis in London often feature face-to-face seating, though that is less common in the USA. Will this be possible under these regulations?

The rules also call for unmanned vehicles to absorb energy like existing vehicles. I don’t know if this is a requirement on unusual vehicle design for regular cars or not. (If it were, it would have prohibited SUVs with their high bodies that can cause a bad impact with a low-body sports-car.)

Consumer Education and Training

This seems like another mild goal, but we don’t want a world where you can’t ride in a taxi unless you are certified as having taking a training course. Especially if it’s one for which you have very little to do. These rules are written more for people buying a car (for whom training can make sense) than those just planning to be a passenger.

Registration and Certification

This section imagines labels for drivers. It’s pretty silly and not very practical. Is a car going to have a sticker saying “This car can drive itself on Elm St. south of Pine, or on highway 101 except in Gilroy?” There should be another way, not labels, that this is communicated, especially because it will change all the time.

Post-Crash Behavior

This set is fairly reasonable — it requires a process describing what you do to a vehicle after a crash before it goes back into service.

Federal, State and Local Laws

This section calls for a detailed plan on how to assure compliance with all the laws. Interestingly, it also asks for a plan on how the vehicle will violate laws that human drivers sometimes violate. This is one of the areas where regulatory effort is necessary, because strictly cars are not allowed to violate the law — doing things like crossing the double-yellow line to pass a car blocking your path.  read more »

NHTSA Regulations part 3: Data Sharing, Privacy, Safety, Security and HMI

After my initial reactions and Overall Analysis here is a point by point consideration of the elements from NHTSA’s 15 point certification list for robocars. See also the second half and the whole series

Let’s dig in:

Data Recording and Sharing

These regulations require a plan about how the vehicle keep logs around any incident (while following privacy rules.) This is something everybody already does — in fact they keep logs of everything for now — since they want to debug any problems they encounter. NHTSA wants the logs to be available to NHTSA for crash investigation.

NHTSA also wants recordings of positive events (the system avoided a problem.)

Most interesting is a requirement for a data sharing plan. NHTSA wants companies to share their logs with their competitors in the event of incidents and important non-incidents, like near misses or detection of difficult objects.

This is perhaps the most interesting element of the plan, but it has seen some resistance from vendors. And it is indeed something that might not happen at scale without regulation. Many teams will consider their set of test data to be part of their crown jewels. Such test data is only gathered by spending many millions of dollars to send drivers out on the roads, or by convincing customers or others to voluntarily supervise while their cars gather test data, as Tesla has done. A large part of the head-start that leaders have in this field is the amount of different road situations they have been able to expose their vehicles to. Recordings of mundane driving activity are less exciting and will be easier to gather. Real world incidents are rare and gold for testing. The sharing is not as golden, because each vehicle will have different sensors, located in different places, so it will not be easy to adapt logs from one vehicle directly to another. While a vehicle system can play its own raw logs back directly to see how it performs in the same situation, other vehicles won’t readily do that.

Instead this offers the ability to build something that all vendors want and need, and the world needs, which is a high quality simulator where cars can be tested against real world recordings and entirely synthetic events. The data sharing requirement will allow the input of all these situations into the simulator, so every car can test how it would have performed. This simulation will mostly be at the “post perception level” where the car has (roughly) identified all the things on the road and is figuring out what to do with them, but some simulation could be done at lower levels.

These data logs and simulator scenarios will create what is known as a regression test suite. You test your car in all the situations, and every time you modify the software, you test that your modifications didn’t break something that used to work. It’s an essential tool.

In the history of software, there have been shared public test suites (often sourced from academia) and private ones that are closely guarded. For some time, I have proposed that it might be very useful if there were a a public and open source simulator environment which all teams could contribute scenarios to, but I always expected most contributions would come from academics and the open source community. Without this rule, the teams with the most test miles under their belts might be less willing to contribute.

Such a simulator would help all teams and level the playing field. It would allow small innovators to even build and test prototype ideas entirely in simulator, with very low cost and zero risk compared to building it in physical hardware.

This is a great example of where NHTSA could use its money rather than its regulatory power to improve safety, by funding the development of such test tools. In fact, if done open source, the agencies and academic institutions of the world could fund a global one. (This would face opposition from companies hoping to sell test tools, but there will still be openings for proprietary test tools.)


This section demands a privacy policy. I’m not against that, though of course the history of privacy policies is not a great one. They mostly involve people clicking “I agree” to things they don’t read. More important is the requirement that vendors be thinking about privacy.

The requirement for user choice is an interesting one, and it conflicts with the logging requirements. People are wary of technology that will betray them in court. Of course, as long as the car is not a hybrid car that mixes human driving with self-driving, and the passenger is not liable in an accident, there should be minimal risk to the passenger from accidents being recorded.

The rules require that personal information be scrubbed from any published data. This is a good idea but history shows it is remarkably hard to do properly.  read more »

Detailed analysis of NHTSA robocar regulations: Overview

The recent Federal Automated Vehicles Policy is long. (My same-day analysis is here and the whole series is being released.) At 116 pages (to be fair, less than half is policy declarations and the rest is plans for the future and associated materials) it is much larger than many of us were expecting.

The policy was introduced with a letter attributed to President Obama, where he wrote:

There are always those who argue that government should stay out of free enterprise entirely, but I think most Americans would agree we still need rules to keep our air and water clean, and our food and medicine safe. That’s the general principle here. What’s more, the quickest way to slam the brakes on innovation is for the public to lose confidence in the safety of new technologies. Both government and industry have a responsibility to make sure that doesn’t happen. And make no mistake: If a self-driving car isn’t safe, we have the authority to pull it off the road. We won’t hesitate to protect the American public’s safety.

This leads in to an unprecedented effort to write regulations for a technology that barely exists and has not been deployed beyond the testing stage. The history of automotive regulation has been the opposite, and so this is a major change. The key question is what justifies such a big change, and the cost that will come with it.

Make no mistake, the cost will be real. The cost of regulations is rarely known in advance but it is rarely small. Regulations slow all players down and make them more cautious — indeed it is sometimes their goal to cause that caution. Regulations result in projects needing “compliance departments” and the establishment of procedures and legal teams to assure they are complied with. In almost all cases, regulations punish small companies and startups more than they punish big players. In some cases, big players even welcome regulation, both because it slows down competitors and innovators, and because they usually also have skilled governmental affairs teams and lobbying teams which are able to subtly bend the regulations to match their needs.

This need not even be nefarious, though it often is. Companies that can devote a large team to dealing with regulations, those who can always send staff to meetings and negotiations and public comment sessions will naturally do better than those which can’t.

The US has had a history of regulating after the fact. Of being the place where “if it’s not been forbidden, it’s permitted.” This is what has allowed many of the most advanced robocar projects to flourish in the USA.

The attitude has been that industry (and startups) should lead and innovate. Only if the companies start doing something wrong or harmful, and market forces won’t stop them from being that way, is it time for the regulators to step in and make the errant companies do better. This approach has worked far better than the idea that regulators would attempt to understand a product or technology before it is deployed, imagine how it might go wrong, and make rules to keep the companies in line before any of them have shown evidence of crossing a line.

In spite of all I have written here, the robocar industry is still young. There are startups yet to be born which will develop new ideas yet to be imagined that change how everybody thinks about robocars and transportation. These innovative teams will develop new concepts of what it means to be safe and how to make things safe. Their ideas will be obvious only well after the fact.

Regulations and standards don’t deal well with that. They can only encode conventional wisdom. “Best practices” are really “the best we knew before the innovators came.” Innovators don’t ignore the old wisdom willy-nilly, they often ignore it or supersede it quite deliberately.

What’s good?

Some players — notably the big ones — have lauded these regulations. Big players, like car companies, Google, Uber and others have a reason to prefer regulations over a wild west landscape. Big companies like certainty. They need to know that if they build a product, that it will be legal to sell it. They can handle the cost of complex regulations, as long as they know they can build it.  read more »

Critique of NHTSA's newly released regulations

The long awaited list of recommendations and potential regulations for Robocars has just been released by NHTSA, the federal agency that regulates car safety and safety issues in car manufacture. Normally, NHTSA does not regulate car technology before it is released into the market, and the agency, while it says it is wary of slowing down this safety-increasing technology, has decided to do the unprecedented — and at a whopping 115 pages.

Broadly, this is very much the wrong direction. Nobody — not Google, Uber, Ford, GM or certainly NHTSA — knows the precise form of these cars will have when deployed. Almost surely something will change from our existing knowledge today. They know this, but still wish to move. Some of the larger players have pushed for regulation. Big companies like certainty. They want to know what the rules will be before they invest. Startups thrive better in the chaos, making up the rules as we go along.

NHTSA hopes to define “best practices” but the best anybody can do in 2016 is lay down existing practices and conventional wisdom. The entirely new methods of providing safety that are yet to be invented won’t be in such a definition.

The document is very detailed, so it will generate several blog posts of analysis. Here I present just initial reactions. Those reactions are broadly negative. This document is too detailed by an order of magnitude. Its regulations begin today, but fortunately they are also accepting public comment. The scope of the document is so large, however, that it seems extremely unlikely that they would scale back this document to the level it should be at. As such, the progress of robocar development in the USA may be seriously negatively affected.

Vehicle performance guidelines

The first part of the regulations is a proposed 15 point safety standard. It must be certified (by the vendor) that the car meets these standards. NHTSA wants the power, according to an Op-Ed by no less than President Obama, to be able to pull cars from the road that don’t meet these safety promises.

  • Data Recording and Sharing
  • Privacy
  • System Safety
  • Vehicle Cybersecurity
  • Human Machine Interface
  • Crashworthiness
  • Consumer Education and Training
  • Registration and Certification
  • Post-Crash Behavior
  • Federal, State and Local Laws
  • Operational Design Domain
  • Object and Event Detection and Response
  • Fall Back (Minimal Risk Condition)
  • Validation Methods
  • Ethical Considerations

As you might guess, the most disturbing is the last one. As I have written many times, the issue of ethical “trolley problems” where cars must decide between killing one person or another are a philosophy class tool, not a guide to real world situations. Developers should spend as close to zero effort on these problems as possible, since they are not common enough to warrant special attention, if not for our morbid fascination with machines making life or death decisions in hypothetical situations. Let the policymakers answer these questions if they want to; programmers and vendors don’t.

For the past couple of years, this has been a game that’s kept people entertained and ethicists employed. The idea that government regulations might demand solutions to these problems before these cars can go on the road is appalling. If these regulations are written this way, we will delay saving lots of real lives in the interest of debating which highly hypothetical lives will be saved or harmed in ridiculously rare situations.

NHTSA’s rules demand that ethical decisions be “made consciously and intentionally.” Algorithms must be “transparent” and based on input from regulators, drivers, passengers and road users. While the section makes mention of machine learning techniques, it seems in the same breath to forbid them.

Most of the other rules are more innocuous. Of course all vendors will know and have little trouble listing what roads their car works on, and they will have extensive testing data on the car’s perception system and how it handles every sort of failure. However, the requirement to keep the government constantly updated will be burdensome. Some vehicles will be adding streets to their route map literally ever day.

While I have been a professional privacy advocate, and I do care about just how the privacy of car users is protected, I am frankly not that concerned during the pilot project phase about how well this is done. I do want a good regime — and even the ability to do anonymous taxi — so it’s perhaps not too bad to think about these things now, but I suspect these regulations will be fairly meaningless unless written in consultation with independent privacy advocates. The hard reality is that during the test phase, even a privacy advocate has to admit that the cars will need to make very extensive recordings of everything they can, so that any problems encountered can be studied and fixed and placed into the test suite.

50 state laws

NHTSA’s plan has been partially endorsed by the self-driving coalition for safer streets (whose members include big players Ford, Google, Volvo, Uber and Lyft.) They like the fact that it has guidance for states on how to write their regulations, fearing that regulations may differ too much state to state. I have written that having 50 sets of rules may not be that bad an idea because jurisdictional competition can allow legal innovation and having software load new parameters as you drive over a border is not that hard.

In this document NHTSA asks the states to yield to the DOT on regulating robocar operation and performance. States should stick to registering cars, rules of the road, safety inspections and insurance. States will regulate human drivers as before, but the feds will regulate computer drivers.

States will still regulate testing, in theory, but the test cars must comply with the federal regulations.

New Authorities

A large part of the document just lists the legal justifications for NHTSA to regulate in this fashion and is primarily for policy wonks. Section 4, however, lists new authorities NHTSA is going to seek in order to do more regulation.

Some of the authorities they may see include:

  • Pre-market safety assurance: Defining testing tools and methods to be used before selling
  • Pre-market approval authority: Vendors would need approval from NHTSA before selling, rather than self-certifying compliance with the regulations
  • Hybrid approaches of pre-market approval and self-certification
  • Cease and desist authority: The ability to demand cars be taken off the road
  • Exemption authority: An ability to grant rue exemptions for testing
  • Post-sale authority to regulate software changes
  • Much more

Other quick notes:

  • NHTSA has abandoned their levels in favour of the SAE’s. The SAE’s were almost identical of course, with the addition of a “level 5” which is meaningless because it requires a vehicle that can drive literally everywhere, and there is not really a commercial reason to make a car at present that can do that.
  • NHTSA is now pushing the acronym “HAV” (highly automated vehicle) as yet another contender in the large sea of names people use for this technology. (Self-driving car, driverless car, autonomous vehicle, automated vehicle, robocar etc.)

This was my preliminary report. More analysis can be found under the NHTSA tag.

The incredible Cheapness of Being Parked

Some people have wondered about my forecast in the spreadsheet on Robotaxi economics about the very low parking costs I have predicted. I wrote about most of the reasons for this in my 2007 essay on Robocar Parking but let me expand and add some modern notes here.

The Glut of Parking

Today, researchers estimate there are between 3 and 8 parking spots for every car in the USA. The number 8 includes lots of barely used parking (all the shoulders of all the rural roads, for example) but the value of 3 is not unreasonable. Almost all working cars have a spot at their home base, and a spot at their common destination (the workplace.) There are then lots of other places (streets, retail lots, etc.) to find that 3rd spot. It’s probably an underestimate.

We can’t use all of these at once, but we’re going to get a great deal more efficient at it. Today, people must park within a short walk of their destination. Nobody wants to park a mile away. Parking lots, however, need to be sized for peak demand. Shopping malls are surrounded by parking that is only ever used during the Christmas shopping season. Robocars will “load balance” so that if one lot is full, a spot in an empty lot too far away is just fine.

Small size and Valet Density

When robocars need to park, they’ll do it like the best parking valets you’ve ever seen. They don’t even need to leave space for the valet to open the door to get out. (The best ones get close by getting out the window!) Because the cars can move in concert, a car at the back can get out almost as quickly as one at the front. No fancy communications network is needed; all you need is a simple rule that if you boxed somebody in, and they turn on their lights and move an inch towards you, you move an inch yourself (and so on with those who boxed you in) to clear a path. Already, you’ve got 1.5x to 2x the density of an ordinary lot.

I forecast that many robotaxis will be small, meant for 1-2 people. A car like that, 4’ by 12’ would occupy under 50 square feet of space. Today’s parking lots tend to allocate about 300 square feet per car. With these small cars you’re talking 4 to 6 times as many cars in the same space. You do need some spare space for moving around, but less than humans need.

When we’re talking about robotaxis, we’re talking about sharing. Much of the time robotaxis won’t park at all, they would be off to pick up their next passenger. A smaller fraction of them would be waiting/parked at any given time. My conservative prediction is that one robotaxi could replace 4 cars (some estimate up to 10 but they’re overdoing it.) So at a rough guess we replace 1,000 cars, 900 of which are parked, with 250 cars, only 150 of which are parked at slow times. (Almost none are parked during the busy times.)

Many more spaces available for use

Robocars don’t park, they “stand.” Which means we can let them wait all sorts of places we don’t let you park. In front of hydrants. In front of driveways. In driveways. A car in front of a hydrant should be gone at the first notification of a fire or sound of a siren. A car in front of your driveway should be gone the minute your garage opens or, if your phone signals your approach, before you get close to your house. Ideally, you won’t even know it was there. You can also explicitly rent out your driveway space for money if you wish it. (You could rent your garage too, but the rate might be so low you will prefer to use it to add a new room to your house unless you still own a car.)

In addition, at off-peak times (when less road capacity is needed) robocars can double park or triple park along the sides of roads. (Human cars would need to use only the curb spots, but the moment they put on their turn signal, a hole can clear through the robocars to let them out.)

So if we consider just these numbers — only 1/6 of the time spent parking and either 4 times the density in parking lots or 2-3 times the volume of non-lot parking (due to the 2 spots per car and loads of extra spots) we’re talking about a huge, massive, whopping glut of parking. Such a large glut that in time, a lot of this parking space very likely will be converted to other uses, slowly reducing the glut.

Ability to move in response to demand

To add to this glut, robocars can be the best parking customers you could ever imagine. If you own a parking lot, you might have sold the space at the back or top of your lot to the robocars — they will park in the unpopular more remote sections for a discount. The human driver customers will prefer those spots by the entrance. As your lot fills up, you can ask the robocars to leave, or pay more. If a high paying human driver appears at the entrance, you can tell the robocars you want their space, and off they can go to make room. Or they can look around on the market and discover they should just pay you more to keep the space. The lot owner is always making the most they can.

If robocars are electric, they should also be excellent visitors, making little noise and emitting no soot to dirty your walls. They will leave a tiny amount of rubber and that’s about it.

The “spot” market

All of this will be driven by what I give the ironic name of the “spot” market in parking. Such markets are already being built by start-ups for human drivers. In this market, space in lots would be offered and bid for like any other market. Durations will be negotiated, too. Cars could evaluate potential waiting places based on price and the time it will take to get there and park, as well as the time to get to their likely next pickup. A privately owned car might drive a few miles to a super cheap lot to wait 7 hours, but when it’s closer to quitting time, pay a premium (in competition with many others of course) to be close to their master.  read more »

Tesla Radar, MobilEye fight and the Comma One $1,000 add-on-box

Tesla’s spat with MobilEye reached a new pitch this week, and Tesla announced a new release of their autopilot and new plans. As reported here earlier, MobilEye announced during the summer that they would not be supplying the new and better versions of their EyeQ system to Tesla. Since that system was and is central to the operation of the Telsa autopilot, they may have been surprised that MBLY stock took a big hit after that announcement (though it recovered for a while and is now back down) and TSLA did not.

Statements and documents now show a nastier battle, with MobilEye intimating they were worried about Tesla using their tool in an unsafe way, invoking all the debate about the fatality and other crashes allegedly caused by people who are lulled into not bothering to supervise the autopilot. Tesla says that instead they have been developing their own advanced vision tools, and that MobilEye was afraid of that and told Tesla that if they wanted more EyeQ chips, they would need to halt the competing project and commit to ME. That’s a nasty spat.

Tesla’s own efforts represent a threat to MobilEye from the growing revolution in neural network pattern matchers. Computer vision is going through a big revolution. MobilEye is a big player in that revolution, because their ASICs do both standard machine vision functions and can do neural networks. An ASIC will beat a general purpose processor when it comes to cost, speed and power, but only if the ASIC’s abilities were designed to solve those particular problems. Since it takes years to bring an ASIC to production, you have to aim right. MobilEye aimed pretty well, but at the same time lots of research out there is trying to aim even better, or do things with more general purpose chips like GPUs. Soon we will see ASICs aimed directly at neural network computations. To solve the problem with neural networks, you need the computing horsepower, and you need well designed deep network architectures, and you need the right training data and lots of it. Tesla and ME both are gaining lots of training data. Many companies, including Nvidia, Intel and others are working on the hardware for neural networks. Most people would point to Google as the company with the best skills in architecting the networks, though there are many doing interesting work there. (Google’s DeepMind built the tools that beat humans at the seemingly impossible game of Go, for example.) It’s definitely a competitive race.

Using Radar

While Tesla works on their vision systems, they also announced a plan to make much more use of radar. That’s an interesting plan. Radar has been the poor 3rd-class sensor of the robocar, after LIDAR and vision. Everybody uses it — you would be crazy not to unless you need to be very low cost. Radar sees further than the other systems, and it tells you immediately how fast any radar target you see is moving relative to you. It sees through fog and other weather, and it can even see under and around big cars in front of you as it bounces off the road and other objects. It’s really good at licence plates as well.

What radar doesn’t have is high resolution. Today’s automotive radars have gotten good enough to tell you what lane an object like another car is in, but they are not designed to have any vertical resolution — you will get radar returns from a stalled car ahead of you on the road and a sign above that lane, and not be sure of the difference. You need your car to avoid a stalled car in your lane, but you can’t have a car that hits the brakes every time it sees a road sign or bridge!

Real world radar is messy. Your antennas send out and receive from a very broad cone with potential signals from other directions and from side lobes. Reflections are coming from vehicles and road users but also from the ground, hills, trees, fences, signs, bushes and bridges. It’s work to get reliable information from it. Early automotive radars found the best solution was to use the doppler speed information, and discard all returns from anything that wasn’t moving towards or away from you — including stalled cars and cross traffic.

One thing that can help (imperfectly) is a map. You can know where the bridges and signs are so you don’t brake for them. Now you can brake for the stalled cars and the cross traffic the Tesla failed to see. You still have an issue with a stalled car under a bridge or sign, but you’re doing a lot better.

There’s a lot of room for improvement in radar, and I will presume — Tesla has not said — that Tesla plans to work on this. The automotive radars everybody buys (from companies like Bosch) were made for the ADAS market — adaptive cruise control, emergency braking etc. It is possible to design new radars with more resolution (particularly in the vertical) and other approaches. You can also try for more resolution, particularly by splitting the transmitter and receiver to produce a synthetic larger aperture. You can go into different bands and get more bandwidth and get more resolution in general. You can play more software tricks, and most particularly, you can learn by examining not just single radar returns, but rather the pattern of returns over time. (After all, humans don’t navigate from still frames, we depend on our visual system’s deep evolved ability to use motion and other clues to understand the world.)

The neural networks are making strides here. For example, while pedestrians produce basic radar returns, it turns out that their walking stride has a particular pattern of changes that can be identified by neural networks. People are doing research now on how examining the moving and dynamic pattern of radar returns can help you get more resolution and also identify shapes and motion patterns of objects and figure out what they are.

I will also speculate that it might be possible to return to a successor of the “sweeped” radars of old, the ones we are used to seeing in old war movies. Modern car radars don’t scan like that, but I have to wonder if with new techniques, like phased arrays to steer virtual beams (already the norm in military radar) and modern high speed electronics, that we might produce radars that get a better sense of where their target is. We’re also getting better at sensor fusion — identifying a radar target in an image or LIDAR return to help learn more about it.

The one best way to improve radar resolution would be to use more bandwidth. There have been experiments in using ultrawideband signals in the very high frequencies which may offer promise. As the name suggests, UWB uses a very wide band, and it distributes its energy over that very wide band, which means it doesn’t put too much energy into any one band, and has less chance of interfering in those bands. It’s also possible that the FCC, seeing the tremendous public value that reliable robocars offer, might consider opening up more spectrum for use in radar applications using modern techniques, and thus increase the resolution.

In other words, Tesla is wise to work on getting more from radar. With the loss of all MobilEye’s vision tools, they will have to work hard to duplicate and surpass that. For now, Tesla is committed to using parts that are for sale for existing production cars, costing hundreds of dollars. That has taken LIDAR “off their radar” even though almost all research teams depend on LIDAR and expect LIDAR to be cheap in a couple of years. (Including the LIDAR from Quanergy, a company I advise.)

Comma announces a $1,000 autopilot box

I wrote earlier about and their efforts to drive with just vision, radar and neural networks. They now plan to offer a box for $1,000 to give you some basic autopilot functionlity as an add-on.

To do this, they are working with only some specific car models, namely some Honda vehicles that already have advanced ADAS in them. Using the car’s internal bus, they can talk to the sensors in these cars (in particular the radar, since the Comma One has a camera) and also send control signals to actuate the steering, brakes and throttle. Then their neural networks can take the sensor information, and output the steering and speed commands to keep you in the lane. (Details are scant so I don’t know if the Comma One box uses its own camera or depends on access to the car’s.)

When I rode in Comma’s prototype it certainly wasn’t up to the level of the Tesla autopilot or some others, but it has been several months so I can’t judge it now. Like the Tesla autopilot, the Comma will not be safe enough to drive the car on its own, and you will need to supervise and be ready to intervene at any time. If you get complacent, as some Tesla drivers have, you could get injured or killed. I have yet to learn what measures Comma will take to make sure people keep their eyes on the road.

Generally, I feel that autopilots are not very exciting products when you have to watch them all the time — as you do — and also that bolt-on products are also not particularly exciting. Cruise’s initial plan (after they abandoned valet parking) was a bolt-on autopilot, but they soon switched to trying to build a real vehicle, and that got them the huge $700M sale to General Motors.

But for Comma, there is a worthwhile angle. Users of this bolt-on box will be helping to provide training data to improve their systems. In fact they will be paying for the privilege of testing the system and training it. Something that companies like Google did the old fashioned way, paying a staff of professionals to drive the cars and gather data. For a tiny, young startup it’s a worthwhile approach.

Robotaxi Economics

The vision of many of us for robocars is a world of less private car ownership and more use of robotaxis — on demand ride service in a robocar. That’s what companies like Uber clearly are pushing for, and probably Google, but several of the big car companies including Mercedes, Ford and BMW among others have also said they want to get there — in the case of Ford, without first making private robocars for their traditional customers.

In this world, what does it cost to operate these cars? How much might competitive services charge for rides? How much money will they make? What factors, including price, will they compete on, and how will that alter the landscape?

Here are some basic models of cost. I compare a low-cost 1-2 person robotaxi, a higher-end 1-2 person robotaxi, a 4-person traditional sedan robotaxi and the costs of ownership for a private car, the Toyota Prius 2, as calculated by Edmunds. An important difference is that the taxis are forecast to drive 50,000 miles/year (as taxis do) and wear out fully in 5 years. The private car is forecast to drive 15,000 miles/year (higher than the average for new cars, which is 12,000) and to have many years and miles of life left in it. As such the taxis are fully depreciated in this 5 year timeline, and the private car only partly.

Some numbers are speculative. I am predicting that the robotaxis will have an insurance cost well below today’s cars, which cost about 6 cents/mile for liability insurance. The taxis will actually be self-insured, meaning this is the expected cost of any incidents. In the early days, this will not be true — the taxis will be safer, but the incidents will cost more until things settle down. As such the insurance prices are for the future. This is a model of an early maturing market where the volume of robotaxis is fairly high (they are made in the low millions) and the safety record is well established. It’s a world where battery prices and reliability have improved. It’s a world where there is still a parking glut, before most surplus parking is converted to other purposes.

Fuel is electric for the taxis, gasoline/hybrid for the Prius. The light vehicle is very efficient.

Maintenance is also speculative. Today’s cars spend about 6 cents/mile, including 1 cent/mile for the tires. Electric cars are expected to have lower maintenance costs, but the totals here are higher because the car is going 250,000 miles not 75,000 miles like the Prius. With this high level of maintenance and such smooth driving, I forecast low repair cost.

Parking is cheaper for the taxis for several reasons. First, they can freely move around looking for the cheapest place to wait, which will often be free city parking, or the cheapest advertised parking on the auction “spot” market. They do not need to park right where the passenger is going, as the private car does. They will park valet style, and so the small cars will use less space and pay less too. Parking may actually be much cheaper than this, even free in many cases. Of course, many private car owners do not pay for parking overtly, so this varies a lot from city to city.

(You can view the spreadsheet directly on Google docs and download it to your own tool to play around with the model. Adjust my assumptions and report your own price estimates.)

The Prius has one of the lowest costs of ownership of any regular car (take out the parking and it’s only 38 cents/mile) but its price is massively undercut by the electric robotaxi, especially my estimates for the half-width electric city car. (I have not even included the tax credits that apply to electric cars today.) For the taxis I add 15% vacant miles to come up with the final cost.

The price of the Prius is the retail cost (on which you must also pay tax) but a taxi fleet operator would pay a wholesale, or even manufacturer’s cost. Of course, they now have the costs of running a fleet of self-driving cars. That includes all the virtual stuff (software, maps and apps) with web sites and all the other staff of a big service company ranging from lawyers to marketing departments. This is hard to estimate because if the company gets big, this cost will not be based on miles, and even so, it will not add many cents per mile. The costs of the Prius for fuel, repair, maintenance and the rest are also all retail. The taxi operator wants a margin, and a big margin at first, though with competition this margin would settle to that of other service businesses.  read more »

Museums in ruins and old buildings will take on new life with Augmented Reality

We’re on the cusp of a new wave of virtual reality and augmented reality technology. The most exciting is probably the Magic Leap. I have yet to look through it, but friends who have describe it as hard to tell from actual physical objects in your environment. The Hololens (which I have looked through) is not that good, and has a very limited field of view, but it already shows good potential.

It’s becoming easier and easier to create VR versions of both fictional and real environments. Every historical documentary show seems to include a nice model reconstructing what something used to look like, and this is going to get better and better with time.

This will be an interesting solution for many of the world’s museums and historical sites. A few years from now, every visit to a ruin or historical building won’t just include a boring and slow audioguide, but some AR glasses to allow you to see a model of what the building was really like in its glory. Not just a building — it should be possible to walk around ancient Rome or other towns and do this as well.

Now with VR you’ll be able to do that in your own home if you like, but you won’t be able to walk very far in that space. (There are tricks that let you fool people into thinking they walked further but they are just not the same as walking in the real space with the real geometry.) They will also be able to populate the space with recordings or animations of people in period costumes doing period things.

This is good news for historical museums. Many of them have very few actual interesting artifacts to see, so they end up just being placards and photos and videos and other multimedia presentations. Things I could easily see on the museum web site; their only virtue is that I am reading the text and looking at the picture in the greatly changed remains of where it happened. These days, I tend to skip museums that have become little more than multimedia. But going to see the virtual recreation will be a different story, I predict.

Soon will be the time for museum and tourist organizations to start considering what spaces will be good for this. You don’t need to restore or rebuild that old castle, as long as it’s safe to walk around. You just need to instrument it with tracking sensors for the AR gear and build and refine those models. Over time, the resolution of the AR glasses will approach that of the eyes, and the reality of the models will improve too. In time, many will feel like they got an experience very close to going back and time and seeing it as it was.

Well, not quite as it was. It will be full of tourists from the future, including yourself. AR keeps them present, which is good because you don’t want to bump into them. A more advanced system will cover the tourists in period clothing, or even replace their faces. You would probably light the space somewhat dimly to assure the AR can cover up what it needs to cover up, while still keeping enough good vision of the floor so you don’t trip.

Of course, if you cover everything up with the AR, you could just do this in a warehouse, and that will happen too. You would need to reproduce the staircases of the recreated building but could possibly get away with producing very little else. As long as the other visitors don’t walk through walls the walls don’t have to be there. This might be popular (since it needs no travel) but many of us still do have an attraction to the idea that we’re standing in the actual old place, not in our hometown. And the museums would also have rooms with real world artifacts to examine, if they have them.

Actual success in laws to reduce corruption and money in politics

At this week’s Singularity U Global Summit, I got a chance to meet with Josh Silver and learn about his organization, I have written often in My New Democracy Category on ways to attack the corruption and money in politics. is making a push for the use of laws to fix some of these issues, through ballot propositions. In the past, I have felt this approach to be very difficult, because for every step that could improve democracy, one of the major parties is benefiting from the flaw, and will fight any effort to fix it. Fixes in congress or the statehouses are difficult, and many of the fixes people like (like campaigning restrictions) violate the 1st amendment.

This organization is trying for a few specific measures in a bipartisan effort to pass ballot resolutions. To make it bipartisan, they are doing it in pairs of “red” and “blue” states. The core changes they are looking for are:

  • Public campaign finance through vouchers. Every voter gets “vouchers” they can hand to the candidates they wish
  • Rules to fix the nightmare of gerrymandering, primarily by having non-partisan committees draw the district boundaries, as has already happened in some states
  • Preferential ballot systems to allow minor parties to participate in elections without risk of “spoiling” the battle between the 2 main parties, as Nader did in Florida 2000 and Perot did in 1992.
  • Improved voter participation though improved registration (another common approach in place in some districts.)
  • Limitations on revolving door lobbying and favours for donors.

RU’s plan is a surprising one — that all 4 of these together might have a better chance of passing than the individual components do. Polls show that voters often have strong support for this full package, even if they don’t like one of the items. So they have this on the ballot in South Dakota and Washington, though the ballot language in Washington is not superb. They are looking for money and support in their campaigns, and I have offered to be on their advisory board. They have already passed versions of their anti-corruption bills in several cities.

Their strategy might work on me (if I were a voter.) I have my own preferred versions of these approaches, but I would rather see this package pass than fight for the perfect version of either one. Nonetheless a few things I would tweak:

Gerrymandering is one of the great cheats of political systems, and it got a lot worse in 2010 through a deliberate effort of the Republican party to massively overspend national money on key statehouse races, allowing it to control those statehouses and redraw the lines to both assure continued control of the statehouses and a control of the House of Representatives in spite of getting a serious minority of the popular vote. Non-partisan redistricting committees are a start, but we need more, and parties that have gained control this way will be unlikely to give it up. I have advocated a rule of convexity to prevent even partisan groups from gerrymandering. But the only hope I have hear is finding a constitutional principle — such as the basic right of franchise — that can get this stopped.

Preferential ballots are good, but sadly the “instant runoff” (also known as Hare, Single Transferable Vote and Australian ballot) is actually the worst of the systems. The problem is not just the chaotic conditions in that simulation article, but that it is one of the harder systems to explain to the voters. If the voters are not immediately clear on how their system works, it causes lack of confidence and probably less voting.

From a purist standpoint, my favourite is Condorcet. It gives good results and can be explained reasonably easily.

Rank your choices in order. To decide the winner, all candidates are compared against all other candidates as though they were in a 2-way race, deciding if more people liked A over B or B over A. The winner is the candidate who beats all the others in these 2-way comparisons. In the very rare case where this doesn’t happen, a tiebreaker is done among the candidates with a claim for the top.

On the other hand, the Appoval system is even simpler. Its instructions can be understood quickly by all:

Check the box next to all candidates which you support as suitable for the role. You can check any number from one or all but one. The candidate with the most votes wins.

Approval throws away the fact that you like one candidate more than another, but in reality it seems to work just as well as the systems that don’t do that, and it’s much simpler to understand. The real flaw is that with Approval, if you have candidates who are close in support, you can get a little “strategy” where voters might not vote for their 2nd choice candidate (even though they like them) out of fear of hurting their first choice. You can’t hurt your first choice in Condorcet and instant-runoff, which is a plus, but in reality, this sort of situation doesn’t occur in the USA, where there are 2 strong major parties and much weaker minor parties. (Ie. in 2000, every Nader supporter who also liked Gore, and many Gore supporters who liked Nader would have voted for both, even though it was sure Gore would handily defeat Nader.)

Improved participation — diminishing the value of GOTV is also a good plan, though we need much more here. Even with high registration, voter turnout remains low in the USA, which means that elections are actually won and lost mostly on GOTV.

If you support these plans, then give some money to Represent.US and vote for their measures if you live in Washington or South Dakota.

Uber buys Otto, folks leave Google, Ford goes big, Tesla dumps MobilEye

The past period has seen some very big robocar news. Real news, not the constant “X is partnering with Y” press releases that fill the airwaves some times.

Uber has made a deal to purchase Otto, a self-driving truck company I wrote about earlier founded by several friends of mine from Google. The rumoured terms of the deal as astronomical — possibly 1% of Uber’s highly valued stock (which means almost $700M) and other performance rewards. I have no other information yet on the terms, but it’s safe to say Otto was just getting started with ambitious goals and would not have sold for less than an impressive amount. For a company only 6 months old, the rumoured terms surpass even the amazing valuation stories of Cruise and Zoox.

While Otto has been working on self-driving technology for trucks, any such technology can also move into cars. Uber already has an active lab in Pittsburgh, but up to now has not been involved in long haul trucking. (It does do local deliveries in some places.) There are many startups out there calling themselves the “Uber for Trucks” and Otto has revealed it was also working on shipping management platform tools, so this will strike some fear into those startups. Because of my friendship with Otto’s team, I will do more commentary when more details become public.

In other Uber news, Uber has announced it will sell randomly assigned Uber rides in their self-driving vehicles in Pittsburgh. If your ride request is picked at random (and because it’s in the right place) Uber will send one of their own cars to drive you on your ride, and will make the ride free, to boot. Of course, there will be an Uber safety driver in the vehicle monitoring it and ready to take over in any problem or complex situation. So the rides are a gimmick to some extent, but if they were not free, it would be a sign of another way to get customers to pay for the cost of testing and verifying self-driving cars. The free rides, however, will probably actually cause more people to take Uber rides hoping they will win the lottery and get not simply the free ride but the self-driving ride.

GM announced a similar program for Lyft — but not until next year.

Ford also goes all-in, but with a later date

Ford has announced it wants to commit to making unmanned capable taxi vehicles, the same thing Uber, Google, Cruise/GM, Zoox and most non-car companies want to make. For many years I have outlined the difference between the usual car company approaches, which are evolutionary and involve taking cars and improving their computers and the approaches of the non-car companies which bypass all legacy thinking (mostly around ADAS) to go directly to the final target. I call that “taking a computer and putting wheels on it.” It’s a big and bold move for Ford to switch to the other camp, and a good sign for them. They have said they will have a fleet of such vehicles as soon as 2021.  read more »

Actually, 50 different state regulations is not that bad an idea

At the recent AUVSI/TRB conference in San Francisco, there was much talk of upcoming regulation, particularly from NHTSA. Secretary of Transportation Foxx and his NHTSA staff spoke with just vague hints about what might come in the proposals due this fall. Generally, they said good things, namely that they are wary of slowing down the development of the technology. But they said things that suggest other directions.

Secretary Foxx began by agreeing that the past history of automotive driving systems was quite different. Regulations have typically been written years or decades after technologies have been deployed. And the written regulations have tended to involve standards which the vendors self-certify their compliance with. What this means is that there is not a government test center which confirms a car complies with the rules in the safety standards. Instead, the vendor certifies they are following the rules. If they certify falsely, that can get them in trouble later with regulators and more importantly in lawsuits. It’s by far the best approach unless the vendors have shown that they can’t be trusted in spite of the fear of these actions.

But Foxx said that they were going to go against that history and consider “pre-market regulation.” Regular readers will know I think that’s an unwise idea, and so do many regulators, who admit that we don’t know enough about the final form of the technology to regulate yet.

Fortunately it was also suggested that NHTSA’s new documents would be more in the form of “guidance” for states. Many states ask NHTSA to help them write self-driving car regulations. Which gets us to a statement that was echoed by several speakers to justify federal regulation, “Nobody wants 50 different regulations” on these cars.

At first, that seems obvious. I mean, who would want it to be that complex? Clearly it’s simpler to have to deal with only one set of regulations. But while that’s true, it doesn’t mean it’s the best idea. They are overestimating the work involved in dealing with different regulations, and underestimating the value of having the ability for states to experiment with new ideas in regulation, and the value of having states compete on who can write the best regulations.

If regulations differed so much between states as to require different hardware, that makes a stronger case. But most probably we are talking about rules that affect the software. That can be annoying, but it’s just annoying. A car can switch what rules it follows in software when it crosses a border with no trouble. It already has to, just because of the different rules of the road found in every state, and indeed every city and even every street! Having a few different policies state by state is no big addition.

Jurisdictional competition is a good thing though, particularly with emerging technologies. Let some states do it wrong, and others do it better, at least at the start. Le them compete to bring the technology first to their region, and invent new ideas on how to regulate something the world has never seen. Over time these regulations can be normalized. By the time people are making 10s of millions of robocars, that normalization will make more sense. But most vendors only plan to deploy in just a few states to begin, anyway. If a state feels its regulations are making it harder for the cars to spread to its cities, it can copy the rules of the other state it likes best.

The competition assures any mistake is localized — and probably eventually fixed. If California follows through with banning unmanned operation, as they have proposed, Texas has said it won’t.

I noted that if the hardware has to change, that’s more of an issue. It’s still not that much of an issue, because cars that operate as taxi services will probably never leave their base state. Most of them will have limited operational zones, and except in cities that straddle state borders, they won’t even leave town, let alone leave the state. Some day, the cars might do interstate trips, but even then you can solve this by having one car drive you to the border and then transfer to a car for the other state. Annoying, but only slight, and not a deal-breaker on the service. A car you own and take on road trips is a different story.

The one way having different state regulations would be a burden would be if there were 50 different complex certification processes to go through. Today, the federal government regulates how cars are made and the safety standards for that. The states regulate how cars operate on the roads. Robocars do blur that line, because how they are made controls how they drive.

For now, I still believe the tort system — even though it differs in all 50 states — is the best approach to regulation. It already has all developers highly paranoid about safety. When the day comes for certification, a unified process could make sense, but that day is still very far away. But for the regulations of just how these cars will operate, it might make sense to keep that with the states, even though it’s now part of the design of the car rather than the intentions of a human driver.

In time, unified regulations will indeed be desired by all, once we’ve had the time to figure out what the right regulations should be. But today? It’s too soon. Innovation requires variety.

Will Robocars be heaven or hell for our cities?

Today, Robin Chase wrote an article wondering if robocars will improve or ruin our cities and asked for my comment on it. It’s a long article, and I have lots of comment, since I have been considering these issues for a while. On this site, I spend most of my time on the potential positive future, though I have written various articles on downsides and there are yet more to write about.

Robin’s question has been a popular one of late, in part a reaction by urban planners who are finally starting to think more deeply on the topic, and reacting to the utopian visions sometimes presented. I am guilty of such visions, though not as guilty as some. We are all seduced in part by excitement of what’s possible in a world where most or all cars are robocars — a world that is not coming for several decades, if in our lifetimes at all. It’s very fair to look at the topic from both sides, and no technology does nothing but good.

When I first met Robin, she was, like most people, a robocar skeptic. She’s done pioneering work in new transportation ideas, but the pace of improvement has surprised even the optimists. I agree with many of the potential negatives directions that she and others paint; in fact I’ve said them myself. Nonetheless my core position is that we can and probably will get tremendous good out of this. While I want city planners to understand these trends, I think it’s too early for them to actually attempt to guide them. Even the developers of the technology don’t quite know the final form it will take when it starts taking over the transport world in the 2020s. Long term planning is simply impossible at this stage — it must be done not with the knowledge of 2016 but with the knowledge of 2023. That approach — the norm in the high tech world, where we expect the world to constantly change underneath us — is anathema to governments and planners. When Marc A. said that software was eating the world, he was telling the world that it will need to start learning the rules of innovation that come from the high tech, internet and computer worlds.

Instead, today’s knowledge can at least guide planners in what not to do. Not to put big investments in things likely to become obsolete. Not to be too clever in thinking they understand the “smart city” of 2025. They need to be like the builders of the internet, who made the infrastructure as simple and stupid as they could, moving innovation away from the infrastructure and into the edges where it could flourish in a way that astounded humanity.


We will get more congestion in the start. Not because of empty vehicles cruising around — most research suggests that will be around 15% of miles, and then only after everybody switches. We’ll get more congestion from two factors:

  • The early cars, especially the big car company offerings, will make traffic jams more tolerable. As such, people will not work as hard to avoid them.
  • Car travel will be come much better and much cheaper; far more people will be able to use it, so they’ll travel more miles in cars than they do today.
  • For some, longer commutes will be more tolerable so they will live further from work. That won’t increase congestion in the central areas (they would still have driven those roads if they lived closer to work) but will increase it in the more remote places.
  • The tolerance for longer commutes may increase “sprawl.”

The good news is that the era of the ubiquitous smartphone brings us the potential for a traffic “miracle” — the ability to entirely eliminate traffic congestion. I first made that remarkable claim in 2008 in my article on congestion. I have a new article in the works which expands on this and makes it easier to understand. The plan is a rare one for me, because the city is heavily involved, but mostly in virtual infrastructure rather than physical. Virtual infrastructure needs to be the new buzzword of the city planner, because only virtual infrastructure is flexible enough to adapt to a changing world.

While this, and other plans to eliminate congestion won’t actually arise very quickly, the reason is not technological, it’s political. So the rise in congestion for the reasons cited above has a silver lining — it will push the public to be more accepting of entirely new ways of managing traffic.

The other way we can attack congestion is through the potential to make vastly superior group transit. Today’s transit sucks. It uses more energy than cars, provides slow and limited service from station to station (not door to door) in limited areas. When it does work efficiently, at rush hour, people travel standing, packed like sardines. People hate it so much that they spend over $8,000/year on vastly more expensive car ownership, the 2nd largest expense in most households. Robocars offer the potential for very appealing group transit which takes people efficiently from door to door in luxury vans on their schedule and along fast routes. Truly appealing transit might greatly increase ridership at congested times.

Robin suggests her Prius could drive around for $1.50/hour rather than park and that will make things worse. Perhaps if people make the same mistake it could, but when you look at it, you realize it costs closer to $20/hour to have a car drive around, and the fuel is just part of that. (Most auto web sites rate the Prius as costing 50 cents/mile, and at 25mph that’s only $12.50 per hour but in reality urban miles tend to cost more than highway miles so I like hourly rates. The Prius is rare though in that it uses less fuel in city miles.) Certainly no rational actor would do this. In addition, as more cars are shared, parking will become plentiful, particularly since a car no longer needs to park right where it dropped you off, but can instead request price bids on the “spot market” and find space going spare not too far away, which will certainly be available for well under $1.50/hour.


Fewer people will drive for a living. At the same time there are more bank tellers today than in 1970. They just don’t cash your cheques and give out withdrawls much any more. This topic deserves a great deal more verbiage, of course, but the kicker is this: These professional drivers are killing several thousand Americans every year while doing their jobs. Only doctors kill more. While the economic disruption is not an illusion, there is no way you can justify artificially preserving a job that is killing so many people. It’s a bit like arguing everybody should smoke so that tobacco farmers don’t lose their jobs.

Shared Cars & Parking

This will be huge, at least the part about sharing rides. Sharing cars for solo rides does not reduce miles driven or the number of cars made, but it does vastly reduce the amount of parking needed. Sharing rides reduces everything. I go much further in my vision to bring ride sharing to the level of dynamically allocated self-driving vans which replace today’s mass transit with something much more desired by the public and much more efficient at the same time.

I do hope the city parking lots are turned into parks mostly. The privately owned lots will get other uses, though downtown multi-floor lots are a bit harder to change.

Energy Grid

It’s true that a major move to electric cars might require more electric capacity. Though they will charge mostly at night when power is cheap (though not solar.) One thing that many people don’t realize we won’t need is charging infrastructure. The great thing about robocars is they go where the energy is. The robocar will drive to the transformer substation which is packed with charging points — you don’t need to put charging stations in parking lots or houses.

However, at least today, electric cars are not cheaper than gasoline ones. The electricity is dirt cheap — under 3 cents/mile. The problem is at today’s battery prices, the battery depreciation is 20 to 40 cents per mile, much more than gasoline. Fortunately, there are optimistic signs about cheaper batteries and longer lasting batteries which could fix this.

But as robocars shrink — especially to one person vehicles for solo riders — they will become much cheaper than today’s cars, and also much more efficient. More efficient than the cars, but also all US transit systems. At a cost of around 30 cents/mile, car transportation will be available to billions more than can afford it today, and certainly to almost all Americans. That has its congestion downsides.

What Should Cities Do?

As noted above, it’s more about what they should not do. I am rebuilding my recommendations here, but my current list includes this:

  • Avoid regulation until you know what players can’t be trusted to do, and then fix only that
  • No more light rail or other single-use right-of-way. Stick to plain, bare pavement which can handle everything.
  • Create “transfer points” for carpools, robotaxi and robovan services to quickly — really quickly — transfer passengers between vehicles. These are useful for robocars, smartphone carpooling and even today’s transit.
  • Don’t require new buildings to put in tons of parking if they don’t want to
  • Make as much of your infrastructure virtual as you can. Encourage lots of data networks in the town, with the newest (5G and later) protocols in 2020.
  • If installing dedicated ROW for transit, make sure it can be converted to use by robocars in the future so the capacity isn’t wasted most of the time. If making tunnels, make sure stations are “offline” so that other vehicles can pass stopped vehicles, and make ramps for access by approved vehicles from the street.

Platoon, or just carpool?

At the recent AUVSI/TRB symposium, a popular research topic was platooning for robocars and trucks. Platooning is perhaps the oldest practical proposal when it comes to car automation because you can have the lead vehicle driven by a human, even a specially trained one, and thus resolve all the problems that come from road situations too complex for software to easily handle.

Early experiments indicated fuel savings, though relatively modest ones. At practical distances, you can see about 10% saving for following vehicles and 5% for the lead vehicle. Unfortunately, a few big negatives showed up. It’s hard to arrange platoons, errors can become catastrophic multi-car pile-ups, other drivers keep inserting themselves into the gap unless it’s dangerously small, and the surprising deal-breaker that comes from the stone chips which are thrown up by lead vehicles which destroy the finish — and in some cases the radiator or windshield — of following cars. They can also create a congestion problem and highway exit problem the way existing convoys of trucks sometimes do that.

One local company named Peloton is making progress with a very simple platooning problem. They platoon two (and only two) trucks on rural highways. The trucks find one another over the regular data networks, and when they get close they establish a local radio connection (using the DSRC protocol that many mistakenly hope will be the standard for vehicle to vehicle communications.) Both drivers keep driving, but the rear driver goes feet-off-the-pedals like a cruise control. The system keeps the vehicles a fixed distance to save fuel. The trucks don’t mind the stone chips too much. Some day, the rear driver might be allowed to go in the back and sleep, which would allow cargo to move 22 hours/day at a lower cost, probably similar to the cost of today’s team driving (about 50 cents/mile) but with two loads instead of one.

Trucks are an easy win, but I also saw a lot of proposals for car platoons. Car platoons are meant to save fuel, but also to increase road capacity. But after looking at all the research a stronger realization came to me. If you have robocars, why would you platoon when you can carpool?. To carpool, you need to find two cars who are going to share a long segment of trip together. Once you have found that, however, you get far more savings in fuel and road usage if the cars can quickly pause together and the passengers from one transfer into the other. Then the empty car can go and move other commuters. This presumes, of course, that the cars are like almost all cars out there today, with many empty seats. When the groups of passengers come to where their path diverts, the vehicle would need to stop at a transfer point and some passengers would move into waiting robotaxis to take them the rest of the way.

All of this is not as convenient as platooning, which in theory can happen without slowing down and finding a transfer point. This is one reason that the carpool transfer stations I wrote about last month could be a very useful thing. Such stations would add only 1-2 minutes of delay, and that’s well worth it if you consider that compared to platooning, this carpooling means a vastly greater fuel saving (almost 50%) and a much greater increase in road capacity, with none of the other downsides of platooning.

If you’re thinking ahead, however, you will connect this idea to my proposed plan for the future of group transit. The real win is to have the computers of the transport service providers notice the common routes of passengers early, before they even get into a vehicle, and thus pool them together with minimal need to stop and switch cars.

A number of folks have imagined designing cars that can physically couple, which would produce very efficient platoons and not add a delay. The problem (aside from the difficulties in doing this safely) is that this requires a physical standard, and physical standards are much harder to get working than software ones. It requires you find a platooning partner who has the same hardware you do, rather than software platooning, which can work with any style of car. Automated matching and carpooling makes no requirements on the individual robocars and their design, which gives it the best path to success.

It is possible (though a bit frightening) to imagine a special bus which could dock to robocars to allow transfer of passengers at speed. Some of you may have seen that a Chinese company has actually built the formerly hypothetical straddling bus (really a train) that has cars drive under it. If you were assured a perfectly smooth road one could imagine a docking extension which could surround a car door of a perfectly synced robocar and allow transfer. I suspect that’s all pretty far in the future.

Beyond the carpool

In a robocar world, we should see a move to having vehicles with fewer empty seats. This happens if more people use single person vehicles for their solo trips, and as carpooling and other technologies make sure that the 4 seater vehicles end up with more people. Indeed, if the carpooling works, that happens naturally. At that point one might say, “now’s the time to platoon.” There is merit to that, but it comes later, rather than sooner. At this later date we can be more comfortable with the safety, and have a greater density of vehicles making it more likely to find others vehicles ready to platoon. Of course, we’ll also have more vans and buses on the road who can combine even larger groups, if you find groups with a lot of journey in common. Platooning is practical even for a few miles, while carpooling tends to need a longer amount of shared journey to make it worth the switch.

At that point in the technology, you can do much more serious platoons, with larger groups of cars, and distances which are short enough for even greater benefit, and short enough to strongly discourage people trying to insert themselves in the middle of the platoon.

So platoons will come and give us even more road capacity. Carpooling, though, is already happening, with 50% of Uber requests in San Francisco being done in UberPool mode. It is the more likely early answer.

Don't throw away your vote on a major party -- vote 3rd party and mean something

It’s common for people to write that those who vote for a minor party in an election are “throwing away” their vote. Here’s a recent article by my friend Clay Shirky declaring there’s no such thing as a protest vote and many of the cases are correct, but the core thesis is wrong. Instead, I will argue that outside the swing states, you are throwing away your vote if you vote for a major party candidate.

To be clear, if you are in one of the crucial swing states where the race is close — and trust me, you know that from the billions of dollars of ad spend in your state, as well as from reading polls — then you should vote for the least evil of the two party candidates as you judge it. And even in most of the country, (non-swing) you should continue to vote for those if you truly support them. But in a non-swing state, in this election in particular, you have an additional option and an additional power.

Consider here in California, which is very solidly for Clinton. Nate Silver rates it as 99.9% (or higher) to go for Clinton. A vote for Clinton or Trump here is wasted. It adds a miniscule proportion to their totals. Clinton will fetch around 8 million votes. You can do the un-noticed thing of making it 8 million and 1, and you’ll bump her federally by an even tinier fraction. Your vote can make no difference to the result (you already know that) and nor will it be noticed in the totals. You’re throwing it away, getting an insignificant benefit for its use.

Of course, the 3rd party candidates had no chance of winning California, or the USA. And while they like to talk a pretend bluster about that, they know that. You know that. Their voters know that. 3rd party voters aren’t voting to help their candidate win, any more than Trump voters imagine their vote could help him win California, or Clinton voters imagine they could affect her assured victory.

Third party voters, however, will express their support for other idea in the final vote totals. If Jill Stein gets 50,000 votes in California, making it 50,001 doesn’t make a huge difference, but it makes 160 times as much difference to her total than a Clinton vote does, or 100x what a Trump vote does. Gary Johnson is doing so well this year (polling about 8% of national popular vote) that his voters won’t do quite as much to his total, but still many times more improvement than the major party votes. Clay argues that “nobody is receiving” the message of your vote for a third party, but the truth is, your vote for Clinton in California or Trump in Texas is a message that has even less chance of being received.

A big difference this year is that the press are paying attention to the minor parties. This year, you will see much more press on Johnson’s and Stein’s totals. It is true that in other years, the TV networks would often ignore those parties. In some case, TV network software is programmed to report only the top two results, and to make the percentages displayed add up to 100%. This is wrong of the networks, but I suspect there is less chance of it happening. Johnson will probably appear in those totals. Web sites and newspapers have generally reported the proper totals.

Does anybody look at these totals for minor candidates? Some don’t, but the big constituency for them is others interested in minor parties. People want a tribe. Many people don’t want to support something unless they see they are not alone, that others are supporting it. Johnson and Stein’s poll numbers are already galvanizing many more votes for them.

This is how third parties arise, and it happens a lot outside the USA. In the USA it has’t happened since the Republicans arose in the 1850s, tied to the collapse of the Whigs. Prior to that multiple parties were more common. Of course, there have been several runs at new parties (Perot/Reform, Dixiecrat and American Independent) which did not succeed. But if everybody refuses to actually vote for the 3rd parties they support because it is viewed as a waste, of course no 3rd parties will ever arise. Having a slim chance at that is one of the things to drive 3rd party voters, because that slim chance still means making a bigger difference than a meaningless extra vote for a major party.

This is how most political change happens. Because people see they are not alone. That’s how small marches and protests grow into bigger ones until leaders are toppled. It’s how small movements within big parties, and whole 3rd parties rise.  read more »

A smarter successor to Trump is even scarier, but it's coming

Social media are jam packed with analysis of the rise of Donald Trump these days. Most of us in what we would view as the intellectual and educated community are asking not just why Trump is a success, but as Trevor Noah asked, “Why is this even a contest?” Clinton may not be, as the Democrats claim, the most qualified person ever to run, but she’s certainly decently qualified, and Trump is almost the only candidate with no public service experience ever to run. Even his supporters readily agree he’s a bit of a buffoon, that he says tons of crazy things, and probably doesn’t believe most of the things he says. (The fact that he doesn’t actually mean many of the crazy things has become the primary justification of those who support him.)

But it is a contest, and while it looks like Clinton will probably win it is also disturbing to me to note that in polls broken down by race and sex, Trump is actually ahead of Clinton by a decent margin among my two groups — whites and males. (Polls have been varying a lot in the weeks of the conventions.) Whites and males have their biases and privileges, of course, but they are very large and diverse groups, and again, to the coastal intellectual view, this shouldn’t even be a contest. (It’s also my view as a foreigner of libertarian leanings and no association with either party.)

The things stacked in favour of the Republican nominee

There have been lots of essays examining the reason for Trump’s success. Credible essays have described a swing to nationalism and/or authoritarianism which Trump has exploited. Trump’s skill at marketing and memes is real. His appeal to paternalism and strength works well (Lakeoff’s “strong father” narrative.) The RNC also identified Hillary Clinton as a likely nominee 2 decades ago, and since then has put major effort into discrediting her, much more time than it’s ever had to work on other opponents. And Clinton herself certainly has her flaws and low approval ratings, even within her own party.

It is also important to note that the chosen successor of a Democratic incumbent has never in history defeated the Republican. (In 1856 Buchanan defeated the 1st ever Republican nominee, Fremont, but was Franklin Pierce’s opponent at the convention.) This stacks the deck in favour of this year’s Republican. Of course, Wilson, Cleveland, Roosevelt the 2nd, Carter and Clinton the 1st all defeated incumbent Republicans, so Democrats are far from impotent.

The specific analysis of this election is interesting, but my concern is about the broader trend I see, a much bigger geopolitical trend arising from technology, globalization, income inequality and redistribution among nations as well as the decline of religion and the classic lifetime middle class career. This big topic will get more analysis in time here. I was particularly interested in this recent article linking globalization and the comparative reduced share for the U.S. middle class. The ascendancy of the secular, western, technological, intellectual capitalist liberal elite is facing an increasing backlash.

Where Trump’s support comes from

Trump of course begins, as Clinton does, with a large “base.” There is an element of the Republican base that will never tolerate voting for Clinton almost no matter how bad Trump is. There is a similar Democratic contingent. This base has been boosted by that 2 decade anti-Clinton campaign.  read more »