Archives

Date

Indoor deliverbots on the rise

Here’s a nice story about the Kiva warehouse delivery robot now being used by major retailers like The Gap. Factory floor robots have been around for some time, and the field even has a name “automated vehicle guidance systems” but these newer deliverbots kick it up a notch, picking up shelves and bringing them to a central area for distribution, finding their way on their own with sensors.

We’re also seeing more hospital deliverbots, which — very slowly — take things around hospitals, roving the same corridors as the people. When a robot goes very slowly, people are willing to allow it to travel with them. The technological question is, how hard it is it to raise that speed and stay safe, and make people believe that they are safe.

Some applications care little about speed, and the slow robots already have a market there. We would not tolerate super slow robots on our streets, getting in the way of our cars, regularly.

One answer may be “extremely deferential” behaviour. Consider a deliverbot trundling down a low-volume street at 10 kph (6mph). It would be constantly checking for a vehicle coming up behind it, using radar, lasers and cameras. With LIDAR it would get about 90 meters of warning, with other sensors perhaps more. Say it detects a car coming behind it at 50 km/h (30mph). It has 8 seconds, during which it will will cover 22 meters. If it’s a small robot — and we might limit the robots to make them small — odds are reasonable that it might find a place in which to duck, such as a driveway. These robots aren’t parking, so they can move into driveway entrances, fire hydrant locations and many small non-parking spaces along the road.

Indeed, it need not find a place to pause on its own side of the road. If there is no immediate oncoming traffic, it could deek to the other side of the road for a hiding spot. Ideally it would be clever and not pick a driveway which has a moving car or even a car sensors reveal has the engine running.

Indeed, it’s not unreasonable for the deliverbot to simply move into the oncoming lane if it is clear, to let the human vehicle pass. This is a bit disconcerting to our usual sense of how things work — slow vehicles don’t move to the left for us to pass them — but there is no reason it could not be true. This is on urban streets where stopped vehicles, turning vehicles and even pedestrians are found in the middle of the street all the time, and drivers have plenty of time to stop for them. Nobody is going to hit such a vehicle, just get annoyed by it.

For the driver, they would see various slow deliverbots on the road ahead. But in all but unusual circumstances, by the time they got close to those robots, they would have pulled out of the lane, to pause in driveway entrances. The main risk is the driver might start to depend on this, and plow right into such a vehicle (at slow speeds) if there was no place for it to pull over. A deliverbot that doesn’t immediately see a place to pull over would probably start blinking a very obvious flashing light on the back, increasing the warnings if the vehicle does not slow down. It might also speed up a little bit, if safe to do so, to reach a spot to pause.

Why is this interesting? I think we’re much closer to building a vehicle that could go 10 kph on slow city streets, using LIDAR. If the vehicle is small and doesn’t weigh a great deal, it simply won’t be capable of doing much damage to people by hitting them. It could even be equipped with airbags on the outside should this ever become unavoidable. The main problems would be people hitting them, or being annoyed by them.

Once accepted, as safety technology improves, the speed can improve — eventually to a level where they don’t get in the way, other than in the sense that any other vehicle is in your way. There will always be those who want to go faster, and so the deference approach will always be useful.