Archives

Date

Bluetooth in all video cameras, and smart microphones

I suggested this as a feature for my Canon 5D SLR which shoots video, but let me expand it for all video cameras, indeed all cameras. They should all include bluetooth, notably the 480 megabit bluetooth 3.0. It’s cheap and the chips are readily available.

The first application is the use of the high-fidelity audio profile for microphones. Everybody knows the worst thing about today’s consumer video cameras is the sound. Good mics are often large and heavy and expensive, people don’t want to carry them on the camera. Mics on the subjects of the video are always better. While they are not readily available today, if consumer video cameras supported them, there would be a huge market in remote bluetooth microphones for use in filming.

For quality, you would want to support an error correcting protocol, which means mixing the sound onto the video a few seconds after the video is laid down. That’s not a big deal with digital recorded to flash.

Such a system easily supports multiple microphones too, mixing them or ideally just recording them as independent tracks to be mixed later. And that includes an off-camera microphone for ambient sounds. You could even put down multiples of those, and then do clever noise reduction tricks after the fact with the tracks.

The cameraman or director could also have a bluetooth headset on (those are cheap but low fidelity) to record a track of notes and commentary, something you can’t do if there is an on-camera mic being used.

I also noted a number of features for still cameras as well as video ones:

  • Notes by the photographer, as above
  • Universal protocol for control of remote flashes
  • Remote control firing of the camera with all that USB has
  • At 480mbits, downloading of photos and even live video streams to a master recorder somewhere

It might also be interesting to experiment in smart microphones. A smart microphone would be placed away from the camera, nearer the action being filmed (sporting events, for example.) The camera user would then zoom in on the microphone, and with the camera’s autofocus determine how far away it is, and with a compass, the direction. Then the microphone, which could either be motorized or an array, could be directional in the direction of the action. (It would be told the distance and direction of the action from the camera in the same fashion as the mic was located.) When you pointed the camera at something, the off-camera mic would also point at it, except during focus hunts.

There could, as before be more than one of these, and this could be combined with on-person microphones as above. And none of this has to be particularly expensive. The servo-controlled mic would be a high end item but within consumer range, and fancy versions would be of interest to pros. Remote mics would also be good for getting better stereo on scenes. Key to all this is that adding the bluetooth to the camera is a minor cost (possibly compensated for by dropping the microphone jack) but it opens up a world of options, even for cheap cameras.

And of course, the most common cameras out there now — cell phones — already have bluetooth and compasses and these other features. In fact, cell phones could readily be your off camera microphones. If there were an nice app with a quick pairing protocol, you could ask all the people in the scene to just run it on their cell phone and put the phone in their front pocket. Suddenly you have a mic on each participant (up to the limit of bluetooth which is about 8 devices at once.)