Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

A BIOS and OS designed for very fast booting (and aborting)

We all know how annoying it is that today’s much faster computers take such a long time to boot, and OS developers are working on speeding it up. Some time ago I proposed a defragmenter that notice what blocks were read in what order at boot and put the contiguous on the disk. I was told that experiments with this had not had much success, but more recently I read reports of how the latest Linux distributions will boot as much a 3 times faster on solid state disks as on rotating ones. There are some SSDs with performance that high (and higher) but typical ones range more in the 120 mb/second rate, better than 80 mb/second HDDs but getting more wins from the complete lack of latency.

However, today I want to consider something which is a large portion of the boot time, namely the power-on-self-test or “POST.” This is what the BIOS does before it gets ready to load the real OS. It’s important, but on many systems is quite slow.

I propose an effort to make the POST multitask with the loading of the real OS. Particularly on dual-core systems, this would be done by having one core do the POST and other BIOS (after testing all the cores of course) and other cores be used by the OS for loading. There are ways to do all this with one core I will discuss below, but this one is simple and almost all new computers have multiple cores.

Of course, the OS has to know it’s not supposed to touch certain hardware until after the BIOS is done initializing it and testing it. And so, there should be BIOS APIs to allow the OS to ask about this and get events as BIOS operations conclude. The OS, until given ownership of the screen, would output its status updates to the screen via a BIOS call. In fact, it would do that with all hardware, though the screen, keyboard and primary hard disk are the main items. When I say the OS, I actually mean both the bootloader that loads the OS and the OS itself once it is handed off to.

Next, the BIOS should, as soon as it has identified that the primary boot hard disks are ready, begin transferring data from the boot area into RAM. Almost all machines have far more RAM than they need to boot, and so pre-loading all blocks needed for boot into a cache, done in optimal order, will mean that by the time the OS kernal takes over, many of the disk blocks it will want to read will already be sitting in ram. Ideally, as I noted, the blocks should have been pre-stored in contiguous zones on the disk by an algorithm that watched the prior boots to see what was accessed and when.

Indeed, if there are multiple drives, the pre-loader could be configured to read from all of them, in a striping approach. Done properly, a freshly booted computer, once the drives had spun up, would start reading the few hundred megabytes of files it needs to boot from multiple drives into ram. All of this should be doable in just a few seconds on RAID style machines, where 3 disks striped can deliver 200mb/second or more of disk read performance. But even on a single drive, it should be quick. It would begin with the OS kernel and boot files, but then pre-cache all the pages from files used in typical boots. For any special new files, only a few seeks will be required after this is done.  read more »