Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

Comparing electricity to a gallon of gasoline

The “burning” question for electric cars is how to compare them with gasoline. Last month I wrote about how wrong the EPA’s 99mpg number for the Nissan Leaf was, and I gave the 37mpg number you get from the Dept. of Energy’s methodology. More research shows the question is complex and messy.

So messy that the best solution is for electric cars to publish their efficiency in electric terms, which means a number like “watt-hours/mile.” The EPA measured the Leaf as about 330 watt-hours/mile (or .33 kwh/mile if you prefer.) For those who really prefer an mpg type number, so that higher is better, you would do miles/kwh.

Then you would get local power companies to publish local “kwh to gallon of gasoline” figures for the particular mix of power plants in that area. This also is not very easy, but it removes the local variation. The DoE or EPA could also come up with a national average kwh/gallon number, and car vendors could use that if they wanted, but frankly that national number is poor enough that most would not want to use it in the above-average states like California. In addition, the number in other countries is much better than in the USA.

The local mix varies a lot. Nationally it’s about 50% coal, 20% gas, 20% nuclear and 10% hydro with a smattering of other renewables. In some places, like Utah, New Mexico and many midwestern areas, it is 90% or more coal (which is bad.) In California, there is almost no coal — it’s mostly natural gas, with some nuclear, particularly in the south, and some hydro. In the Pacific Northwest, there is a dominance by hydro and electricity has far fewer emissions. (In TX, IL and NY, you can choose greener electricity providers which seems an obvious choice for the electric-car buyer.)

Understanding the local mix is a start, but there is more complexity. Let’s look at some of the different methods, staring with an executive summary for the 330 wh/mile Nissan Leaf and the national average grid:  read more »

  • Theoretical perfect conversion (EPA method): 99 mpg-e(perfect)
  • Heat energy formula (DoE national average): 37 mpg-e(heat)
  • Cost of electricity vs. gasoline (untaxed): 75 mpg-e($)
  • Pollution, notably PM2.5 particulates: Hard to calculate, could be very poor. Hydrocarbons and CO: very good.
  • Greenhouse Gas emissions, g CO2 equivalent: 60 mpg-e(CO2)