Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

ITS vehicle to vehicle demo at ITS World Congress

I’m just back from the “ITS World Congress” an annual meeting of people working on “Intelligent Transportation Systems” which means all sorts of applications of computers and networking to transportation, particularly cars. A whole bunch of stuff gets covered there, including traffic monitoring and management, toll collection, transit operations etc. but what’s of interest to robocar enthusiasts is what goes into cars and streets. People started networking cars with systems like OnStar, now known in the generic sense as “telematics” but things have grown since then.

The big effort involves putting digital radios into cars. The radio system, known by names like 802.11p, WAVE and DSRC involves an 802.11 derived protocol in a new dedicated band at 5.9ghz. The goal is a protocol suitable for safety applications, with super-fast connections and reliable data. Once the radios in the car, the car will be able to use it to talk to other cars (known as V2V) or to infrastructure facilities such as traffic lights (known as V2I.) The initial planned figured that the V2I services would give you internet in your car, but the reality is that 4G cellular networks have taken over that part of the value chain.

Coming up with value for V2V is a tricky proposition. Since you can only talk to cars very close to you, it’s not a reliable way to talk with any particular car. Relaying through the wide area network is best for that unless you need lots of bandwidth or really low latency. There’s not much that needs lots of bandwidth, but safety applications do demand both low latency and a robust system that doesn’t depend on infrastructure.

The current approach to safety applications is to have equipped cars transmit status information. Formerly called a “here I am” this is a broadcast of location, direction, speed and signals like brake lights, turn signals etc. If somebody else’s car is transmitting that, your car can detect their presence, even if you can’t see them. This lets your car detect and warn about things like:

  • The car 2 or 3 in front of you, hidden by the truck in front of you, that has hit the brakes or stalled
  • People in your blind spot, or who are coming up on you really fast when your’re about to change lanes
  • Hidden cars coming up when you want to turn left, or want to pass on a rural highway
  • Cars about to run red lights or blow stop signs at an intersection you’re about to go through
  • Privacy is a big issue. The boxes change their ID every minute so you can’t track a car over a long distance unless you can follow it over every segment, but is that enough? They say a law is needed so the police don’t use the speed broadcast to ticket you, but will it stay that way?

It turns out that intersection collisions are a large fraction of crashes, so there’s a big win there, if you can do it. The problem is one of critical mass. Installed in just a few cars, such a system is extremely unlikely to provide aid. For things like blindspot detection, existing systems that use cameras or radars are far better because they see all cars, not just those with radios. Even with 10% penetration, there’s only a 1% chance any given collision could be prevented with the system, though it’s a 10% chance for the people who seek out the system. (Sadly, those who seek out fancy safety systems are probably less likely to be the ones blowing through red lights, and indeed another feature of the system — getting data from traffic lights — already can do a lot to stop an equipped car from going through a red light by mistake.)  read more »

A John McCarthy story

They say that famous deaths come in threes. That’s no doubt just an artifact of our strange sense of coincidence, but after Jobs and Ritchie, tonight we learn of the death of John McCarthy, AI pioneer and creator of LISP.

My first personal encounter with John was part of a big story of my life, the banning of rec.humor.funny. In a short summary of what’s told there, RHF had been banned at Waterloo and later, due to a comedy of errors got banned at Stanford. Shortly after the ban John called me up and said he wanted to be a champion against the ban. He had been worried for some time about the growing tide of speech codes at supposed bastions of academic freedom, and the idea of banning publications on the internet was a new level. John used his sway to get some press, organize a protest march and have the matter fixed by the academic senate. Strangely, just a few days ago I was at a dinner for a group called FIRE which fights against crazy academic bans, and I was recounting the story of what John did at Stanford for the first time in many years.

Later, I moved to silicon valley and got to know John in person a bit more. He was an incredible force of character long after the age where most have shrunk away. If the AIs of the future are able to resurrect the figures of the past, you know he’ll be one of the first in line for them.

RIP John. And Dennis (who I praised over on Google+). And Steve Jobs. Let’s really limit it to three for a while.

Google's robocar explained in video

Since getting involved with Google’s self-driving-car team, I’ve had to keep silent about its internals, but for those who are interested in the project, a recent presentation at the intelligent robotics conference in San Francisco is now up on youtube. The talk is by Sebastian Thrun (overall project leader) and Chris Urmson, lead developer. Sebastian led the Stanley and Junior teams in the Darpa Grand Challenge and Chris led CMU teams, including BOSS which won the urban challenge.

The talk begins in part one with the story of the grand challenges. If you read this blog you probably know most of that story.

Part two (above) shows video that’s been seen before in Sebastian’s TED talk and my own talks, and maps of some of the routes the car has driven. Then you get Chris showing some hard technical details about mapping and sensors.

Part three shows the never before revealed story of a different project called “Caddy”: self-driving, self-delivering golf carts for use in campus transportation. The golf carts are an example of what I’ve dubbed a WhistleCar — a car that delivers itself and then you drive it in any complex situations.

If you want to see what’s inside the project, these videos are a must-watch, particularly part 2 (embedded above) and the start of part 3.

There’s lots of other robocar news after the Intelligent Transportation Systems conference, which I attended this week in Orlando FL. The ITS community is paying only minimal attention to robocars, which is an error on their part, but a lot of the technology there will eventually affect how robocars develop — though a surprising amount of it will become obsolete because it focuses on the problems caused by lots of human driving.

Oxford and BAE make "Wildcat" robocar

The list of robocar teams grows again with a new project from Oxford university, led by Paul Newman. Nissan is also involved, though the base vehicle is a Bowler Wildcat off-road vehicle.

The project sports a LIDAR design I have not yet seen, with 4 laser units on a mount spinning at what looks like 1-2hz, but they claim a 40hz sampling rate and do have very nice mapping results. They claim their localizer is very good, and demos show it working on rough off-road terrain. Some videos also see it doing waypoint driving without the LIDAR but they talk about why GPS is not adequate.

The Daily Mail story has the best pictures and details. You can also visit the MRG youtube channel.

The vehicle reportedly uses stereo vision as well as the LIDAR, and has left and right bumper mounted lasers as well as the roof unit.

There are additional videos, made by reporters in this BBC news story and a good interview in this Telegraph story.

The claims about the vehicle have a British understatement. They say it will be 10-15 years before it’s ready for the roads, and talk mostly about simple problems like handling traffic jams — something Audi, BWM and VW have all claimed they will release in the middle of this decade, using simpler sensor systems. He also envisions a future arms-race where a car that can do 10 minutes/day of self-driving competes with one that can do 15.

Congestion is their main message it seems, citing the Dept. for Transport’s figures of a 25 billion pound cost for congestion in 2025 in the UK.

Bigdog becomes Alphadog -- walking robots step closer to the real world

Earlier I wrote about the transportation potential of walking robots-of-burden like BigDog. While these robots are not for the long haul, a whole range of options are opened up by a wheeled vehicle that can get to where the road ends, and then lower legs to walk along rough terrain, up stairs and up hills.

Boston Dynamics has gone even further with their latest model, AlphaDog

The AlphaDog’s legs are hydraulic, and so adding legs like this to a car which has a motor and compressor is not so far fetched. In this design they could easily fold up into the sides of a single person wheeled vehicle. In the video, the robot is shown carrying 400lbs of weights, and a range of 20km is claimed. You might not quite want to ride it yet, but that’s coming.

Let’s look at some of the consequences for transportation and cities:

  • Houses need not be on streets to have full access by small vehicles and cargo delivery robots. They can be on the side of hills and up stairs. Neighbourhoods can be built with just small lightly paved or graded paths so that the robot’s legs don’t disturb the terrain.
  • The robots may well, in a controlled environment, be able to place their feet with good precision. As such the path for a walking robot might look like just a series of stone pads dotting the grass — the way some paths for people look. In reality they would be more sturdy, but that’s what they could look like.
  • In developing countries which do not have infrastructure, they may never have to put in that much infrastructure. Combined with flying robots, delivery of goods can become possible to any location, and at high speed.
  • The world’s tourist destinations may become swamped with people who can ride a walking robot to remote locations where before the daunting hike kept the crowds down. There will be efforts to ban walking chairs, but the elderly and disabled will be able to fight such bans as discriminatory.
  • Indeed, for the disabled and aged, the walking chair robot might well open up lots of the world that is now closed. The main issue would be power and noise. The motors that power BigDog are very noisy. AlphaDog in the video is using external power.
  • Robotic cargo delivery (deliverbots) need no longer be limited to places you can roll up to. That can include places inside buildings, even up stairs.

Browser support for "sessions" to make them longer

I’m actually not a fan of login and sessions on the web, and in fact prefer a more stateless concept I call authenticated actions to the more common systems of login and “identity.”

But I’m not going to win the day soon on that, and I face many web sites that think I should have a login session, and that session should in fact terminate if I don’t click on the browser often enough. This frequently has really annoying results — you can be working on a complex form or other activity, then switch off briefly to other web sites or email to come back and find that “your session has expired” and you have to start from scratch.

There are times when there is an underlying reason for this. For example, when booking things like tickets, the site needs to “hold” your pending reservation until you complete it, but if you’re not going to complete it, they need to return that ticket or seat to the pool for somebody else to buy. But many times sessions expire without that reason. Commonly the idea is that for security, they don’t want to leave you logged on in a way that might allow somebody to come to your computer after you leave it and take over your session to do bad stuff. That is a worthwhile concept, particularly for people who will do sessions at public terminals, but it’s frustrating when it happens on the computer in your house when you’re alone.

Many sites also overdo it. While airlines need to cancel your pending seat requests after a while, there is no reason for them to forget everything and make you start from scratch. That’s just bad web design. Other sites are happy to let you stay “logged on” for a year.

To help, it would be nice if the browser had a way of communicating things it knows about your session with the computer to trusted web sites. The browser knows if you have just switched to other windows, or even to other applications where you are using your mouse and keyboard. Fancier tools have even gone so far as to use your webcam and microphone to figure if you are still at your desk or have left the computer. And you know whether your computer is in a public space, semi-public space or entirely private space. If a browser, or browser plug-in, has a standardized way to let a site query session status, or be informed of session changes and per-machine policy, sites could be smarter about logging you out. That doesn’t mean your bank still should not be paranoid if you are logged in to a session where you can spend your money, but they can be more informed about it.  read more »