Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

Top Myths of Robocars (and why V2V is not the answer)

There’s been a lot of press on robocars in the last few months, and a lot of new writers expressing views. Reading this, I have encountered a recurring set of issues and concerns, so I’ve prepared an article outlining these top myths and explaining why they are not true.

Perhaps of strongest interest will be one of the most frequent statements — that Vehicle to Vehicle (V2V) communication is important, or even essential, to the deployment of robocars. The current V2V (and Vehicle to Infrastructure) efforts, using the DSRC radio spec are quite extensive, and face many challenges, but to the surprise of many, this is largely orthogonal to the issues around robocars.

So please read The top 10 (or so) myths or robocars.

They are:

  • They won’t be safe
  • The big issue is who will be liable in a crash
  • The cars will need special dedicated roads and lanes
  • This only works when all cars are robocars and human driving is banned
  • We need radio links between cars to make this work
  • We wont see self-driving cars for many decades
  • It is a long time before this will be legal
  • How will the police give a robocar a ticket?
  • People will never trust software to drive their car
  • They can’t make an OS that doesn’t crash, how can they make a safe car?
  • We need the car to be able to decide between hitting a schoolbus and going over a cliff
  • The cars will always go at the speed limit

You may note that this is not my first myths FAQ, as I also have Common objections to Robocars written when this site was built. Only one myth is clearly in both lists, a sign of how public opinion has been changing.

CES Report, Road tolling and more

I’m back from CES, and there was certainly a lot of press over two pre-robocar announcements there:

Toyota

The first was the Toyota/Lexus booth, which was dominated by a research car reminiscent of the sensor-stacked vehicles of the DARPA grand challenges. It featured a Velodyne on top (like almost all the high capability vehicles today) and a very large array of radars, including six looking to the sides. Toyota was quite understated about the vehicle, saying they had low interest in full self-driving, but were doing this in order to research better driver assist and safety systems.

The Lexus booth also featured a car that used ultrasonic sensors to help you when backing out of a blind parking space. These sensors let you know if there is somebody coming down the lane of the parking lot.

Audi

Audi did two demos for the press which I went to see. Audi also emphasized that this is long-term concept stuff, and meant as research work to enhance their “driver in the loop systems.” They are branding these projects “Piloted Parking” and “Piloted Driving” to suggest the idea of an autopilot with a human overseer. However, the parking system is unmanned, and was demonstrated in the lot of the Mandarin Oriental. The demo area was closed off to pedestrians, however.

The parking demo was quite similar to the Junior 3 demo I saw 3 years ago, and no surprise, because Junior 3 was built at the lab which is a collaboration between Stanford and VW/Audi. Junior 3 had a small laser sensor built into it. Instead, the Piloted Parking car had only ultransonic sensors and cameras, and relied on a laser mounted in the parking lot. In this appraoch, the car has a wifi link which it uses to download a parking lot map, as well as commands from its owner, and it also gets data from the laser. Audi produced a mobile app which could command the car to move, on its own, into the lot to find a space, and then back to pick up the owner. The car also had a slick internal display with pop-up screen.

The question of where to put the laser is an interesting one. In this approach, you only park in lots that are pre-approved and prepared for self-parking. Scanning lasers are currently expensive, and if parking is your only application, then there are a lot more cars then there are parking lots and it might make sense to put the expensive sensor in the lots. However, if the cars want to have the laser anyway for driving it’s better to have the sensor in the car. In addition, it’s more likely that car buyers will early adopt than parking lot owners.

In the photo you see the Audi highway demo car sporting the Nevada Autonomous Vehicle testing licence #007. Audi announced they just got this licence, the first car maker to do so. This car offers “Piloted Driving” — the driver must stay alert, while a lane-keeping system steers the car between the lane markers and an automatic cruise control maintains distance from other cars. This is similar to systems announced by Mercedes, Cadillac, VW, Volvo and others. Audi already has announced such a system for traffic jams — the demo car also handled faster traffic.

Audi also announced their use of a new smaller LIDAR sensor. The Velodyne found on the Toyota car and Google cars is a large, roof-mounted device. However, they did not show a car using this sensor.

Audi also had a simulator in their booth showing a future car that can drive in traffic jams, and lets you take a video phone call while it is driving. If you take control of the car, it cuts off the video, but keeps the audio.  read more »

Robocars and road charging