Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

UK, Michigan & Sweden push robocars, Toyota doesn't -- and Amazon delivery drones

The past few weeks have been rife with governments deciding to throw support behind robocars.

I wrote earlier about the plan for pods in Milton Keynes, NW of London. The UK has also endowed a a £10m prize fund to build vehicles and for a town to adapt to them. This will be managed in part by the Oxford team which has built a self-driving Wildcat and Nissan LEAF.

In Michigan, they have been working on a new robocar law that may be the next one, and the University of Michigan has a plan to put a fleet of cars out by 2021. Ann Arbor is the site of the ITS V2V testbed, which will probably slow this effort down, but Michigan is keen on not having the auto industry taken away from it.

Volvo, while now a Chinese company, has had many efforts, including their Sartre convoy experiments. Now they have declared that they will have 100 cars on the road in Gothenberg in 2017. They will also build parking systems.

In spite of all this, Toyota recently declared it is only building vehicles for research purposes, and has no desire to market such cars. Toyota had been a leader among the Japanese companies (until Nissan took over that role by building a research lab in silicon valley) but it’s surprising to see them drop out. Of course I predict they will regret that.

Amazon drone delivery

The big news this weekend was the announcement that Amazon.com wants to do drone delivery, accompanied with a concept video. This got everybody buzzing. I was interviewed for stories by the Washington Post and Wall Street Journal (paywall) as well as the New York Times because of my prior writings on deliverbots.

Some of you may remember I post I did early last year on drone defibrillator delivery and the efforts of our students at Singularity University to build Matternet for drone delivery in the developing world.

Drone delivery is interesting, though its big value will be in lightweight, urgent items like medicines. Ground vehicles will still win for cost and efficiency for most items. However, the drones can be much faster, and have options like delivering to places ground vehicles can’t reach — like your roof or your backyard. Deliverbots must get safe and legal on busy streets, drones have to figure out how to not hit one another (or people on the ground) in crowded airspace. The LIDARS that make ground vehicles practical have enough range for ground travel but poor range as flying sensors. Radar is good in the air but can have interference problems.

Getting a drone to land at any given address is a hard problem. There are trees, overhead wires, wind gusts and strange geometries. I suspect drone delivery will work best if the drop location has already been scanned and mapped. However, if there is a decent clearing, I could see it working by having the recipient put down a special marker (like a QR code) on the ground. GPS is not accurate enough to fly with but camera could pull out special markers.

One great marker would be your cell phone. Either with its “flash” LED pointed up and pulsing, or its screen, if the screen is bright enough. Go outside, put your phone down, have it guide the drone partway in with radio and GPS, and then have the drone’s camera follow the flashing light. If phones had better raw GPS access (they don’t — not yet) they could also provide differential GPS information to a drone to guide it in.

This works because with robot delivery, you never need to deliver to an address — you deliver to a person. Wherever that person is, or at least never when the person isn’t there, unless you want to. A robot delivery service will wait for a signal that you are home or one the way before delivering to your home, but might also deliver to you in whatever parking lot you are in, or your office. The robot won’t release the cargo unless it gets the ACK from your phone as you “sign” for it.

Multi-copter drones today don’t have a lot of capacity and range, but it’s improving. Liquid fuels for larger drones might help boost that. Fixed wing drones have much more capacity, but they need runways (or a skilled launcher) to take off. Some fixed-wing drones can land vertically if they have motors powerful enough to lower them down tail first though they tend to need something suitable to land on in such cases.

Robot delivery should make existing retailers, even big box ones like WalMart, scared of online retailers like Amazon. While a drone won’t replace WalMart on a trip where you plan to fill your shopping cart, it might well be very suitable for the things you buy from Walgreens.