Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

V2V vs. the paths to a successful networked technology (Part 1)

A few weeks ago, in my article on myths I wrote why the development of “vehicle to vehicle” (V2V) communications was mostly orthogonal to that of robocars. That’s very far from the view of many authors, and most of those in the ITS community. I remain puzzled by the V2V plan and how it might actually come to fruition. Because there is some actual value in V2V, and we would like to see that value realized in the future, I am afraid that the current strategy will not work out and thus misdirect a lot of resources.

This is particularly apropos because recently, the FCC issued an NPRM saying it wants to open up the DSRC band at 5.9ghz that was meant for V2V for unlicenced wifi-style use. This has been anticipated for some time, but the ITS community is concerned about losing the band it received in the late 90s but has yet to use in anything but experiments. The demand for new unlicenced spectrum is quite appropriately very large — the opening up of 2.4gz decades ago generated the greatest period of innovation in the history of radio — and the V2V community has a daunting task resisting it.

In this series I will examine where V2V approaches went wrong and what they might do to still attain their goals.


I want to begin by examining what it takes to make a successful cooperative technology. History has many stories of cooperative technologies (either peer-to-peer or using central relays) that grew, some of which managed to do so in spite of appearing to need a critical mass of users before they were useful.

Consider the rise and fall of fax (or for that matter, the telephone itself.) For a lot of us, we did not get a fax machine until it was clear that lots of people had fax machines, and we were routinely having people ask us to send or receive faxes. But somebody had to buy the first fax machine, in fact others had to buy the first million fax machines before this could start happening.

This was not a problem because while one fax machine is useless, two are quite useful to a company with a branch office. Fax started with pairs of small networks of machines, and one day two companies noticed they both had fax and started communicating inter-company instead of intra-company.

So we see rule one: The technology has to have strong value to the first purchaser. Use by a small number of people (though not necessarily just one) needs to be able to financially justify itself. This can be a high-cost, high-value “early adopter” value but it must be real.

This was true for fax, e-mail, phone and many other systems, but a second principle has applied in many of the historical cases. Most, but not all systems were able to build themselves on top of an underlying layer that already existed for other reasons. Fax came on top of the telephone. E-mail on top of the phone and later the internet. Skype was on top of the internet and PCs. The underlying system allowed it to be possible for two people to adopt a technology which was useful to just those two, and the two people could be anywhere. Any two offices could get a fax or an e-mail system and communicate, only the ordinary phone was needed.

The ordinary phone had it much harder. To join the phone network in the early days you had to go out and string physical wires. But anybody could still do it, and once they did it, they got the full value they were paying for. They didn’t pay for phone wires in the hope that others would some day also pay for wires and they could talk to them — they found enough value calling the people already on that network.

Social networks are also interesting. There is a strong critical mass factor there. But with social networks, they are useful to a small group of friends who join. It is not necessary that other people’s social groups join, not at first. And they have the advantage of viral spreading — the existing infrastructure of e-mail allows one person to invite all their friends to join in.

Enter Car V2V

Car V2V doesn’t satisfy these rules. There is no value for the first person to install a V2V radio, and very tiny value for the first thousands of people. An experiment is going on in Ann Arbor with 3,000 vehicles, all belonging to people who work in the same area, and another experiment in Europe will equip several hundred vehicles.  read more »