Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

US push to mandate V2V radios -- is it a good choice?

It was revealed earlier this month that NHTSA wishes to mandate vehicle to vehicle radios in all cars. I have written extensively on the issues around this and regular readers will know I am a skeptic of this plan. This is not to say that I don’t think that V2V would not be useful for robocars and regular cars. Rather, I believe that its benefits are marginal when it comes to the real problems, and for the amount of money that must be spent, there are better ways to spend it. In addition, I think that similar technology can and will evolve organically, without a government mandate, or with a very minimal one. Indeed, I think that technology produced without a mandate or pre-set standards will actually be superior, cheaper and be deployed far more quickly than the proposed approach.

The new radio protocol, known as DSRC, is a point-to-point wifi style radio protocol for cars and roadside equipment. There are many applications. Some are “V2V” which means cars report what they are doing to other cars. This includes reporting one’s position tracklog and speed, as well as events like hitting the brakes or flashing a turn signal. Cars can use this to track where other cars are, and warn of potential collisions, even with cars you can’t see directly. Infrastructure can use it to measure traffic.

The second class of applications are “V2I” which means a car talks to the road. This can be used to know traffic light states and timings, get warnings of construction zones and hazards, implement tolling and congestion charging, and measure traffic.

This will be accomplished by installing a V2V module in every new car which includes the radio, a connection to car information and GPS data. This needs to be tamper-proof, sealed equipment and must have digital certificates to prove to other cars it is authentic and generated only by authorized equipment.

Robocars will of course use it. Any extra data is good, and the cost of integrating this into a robocar is comparatively small. The questions revolve around its use in ordinary cars. Robocars, however, can never rely on it. They must be be fully safe enough based on just their sensors, since you can’t expect every car, child or deer to have a transponder, ever.

One issue of concern is the timeline for this technology, which will look something like this:

  1. If they’re lucky, NHTSA will get this mandate in 2015, and stop the FCC from reclaiming the currently allocated spectrum.
  2. Car designers will start designing the tech into new models, however they will not ship until the 2019 or 2020 model years.
  3. By 2022, the 2015 designed technology will be seriously obsolete, and new standards will be written, which will ship in 2027.
  4. New cars will come equipped with the technology. About 12 million new cars are sold per year.
  5. By 2030, about half of all cars have the technology, and so it works in 25% of accidents. 3/4 of those will have the obsolete 2015 technology or need a field-upgrade. The rest will have soon to be obsolete 2022 technology. Most cars also have forward collision warning by this point, so V2V is only providing extra information in a tiny fraction of the 25% of accidents.
  6. By 2040 almost all cars have the technology, though most will have older versions. Still, 5-10% of cars do not have the technology unless a mandate demands retrofit. Some cars have the equipment but it is broken.

Because of the quadratic network effect, in 2030 when half of cars have the technology, only 25% of car interactions will be make use of it, since both cars must have it. (The number is, to be fair, somewhat higher as new cars drive more than old cars.)  read more »

More World Tour: Dubai, Singapore

The Robocars world tour continues. Monday I will speak on robocars at the UAE Government conference in Dubai, where I just landed. Then it’s off to talk about them at a private event in Singapore, but I’ll also visit teams there. If I have time, I will check out Masdar — what was originally going to be the first all-robocar city — while in the UAE.

When I get back I will have more on some new announcements, particularly the vehicle-to-vehicle communications plan announcement, and new teams forming up. Though for my views on the V2V issue, you can read the three part series wrote last year, V2V and how to build a networked technology.

Virtual window in cruise ship comes to life

Very long-time readers of this blog will remember a proposal I made 10 years ago that cruise ship inside cabins use HDTVs with the outside view. Now a cruise ship is launching with such a system, though bigger than I proposed.

The Royal Caribbean vessel will feature an artificial balcony using an 80 inch screen including a fake railing. While the cameras used are 4K, I suspect the screens will only be HDTV, since 4K 80 inch screens are hugely expensive right now, though very shortly they will be quite affordable for this.

It will be interesting to see if the virtual balcony approach does much better than just using something meant to look like a window, which frankly would be a bunch easier though not get that 3D effect from the railing. (The fact that the image and railing are at the same focus distance may actually complicate things.) I think an interesting approach would be instead to use a screen with infinity optics, which make the screen focus as though it is at infinity. This requires space outside the room, which you could get by having two adjoining cabins each take a box out of the other cabin for the mirror and lenses. (Though doing really good collimated light takes a lot of space which is at too much of a premium in a cruise ship, though perhaps not as much in interior cabins.

The sample photo shows a rather large stateroom — usually interior rooms are small and for those who can’t afford a window, but this might change. One reason people tolerate interior rooms is they plan to spend very little time in the room not sleeping, but the reality is that even doing that, it is disconcerting not to have the subtle cues of real exposure to day and night, waking up and not knowing what time it is. It generates a greater feeling of being closed in to be in a small enclosed and windowless space, compared to large interior spaces. As I pointed out before, having a view of the real horizon helps a lot with seasickness.

If this is a success, it could lead to several things:

  • Ability to sell many more interior rooms, making better use of space in the middle of the very wide ships desired today.
  • Low, central cabins have the least sway, but in the past were not popular with the seasick because that’s much worse without a window.
  • People might actually choose a larger, interior cabin at the same price as a much smaller, exterior cabin. Even if you plan to spend only modest time awake in your cabin, life in a larger cabin is more pleasant.
  • Virtual walls could be put on multiple sides of the cabin, so you get the illusion of an owner’s suite, with views in all directions.

To really get a super effect, you could even have people wear 3D glasses in the cabin — polarized ones that double as sunglasses if you can make the screens bright enough. These allow you to do a special trick if there is only one person in the room, which make the screens simulate parallax, so that as you move your head, the background moves as though you are really looking through a window. Most ocean scenes are not very 3D themselves. It is debatable if this would be good enough for people to find it worth wearing the glasses, and of course there is the issue of dealing with only one person in the room. You can handle 2 people in the room if you have shutter glasses, very bright screens, and 240hz or faster displays. Handling 2 is probably enough — turn the effect off the very rare times you have guests.

Finally, I would even wonder if it made sense to pipe in outside air on demand.

4K displays can get close to eye resolution depending on the viewing distance. Interior cabins on cruise ships are dismal places, and so if this can make them more palatable, it can be financially worthwhile.

Disney has also been doing this since 2010, I have learned, with a virtual porthole. They also add animations to the video (of Disney Characters peeking in the window) which presumably the kids like. Reports are this has caused a major boost in their inside cabin sales.