Archives

Date
  • 01
  • 02
  • 03
  • 04
  • 05
  • 06
  • 07
  • 08
  • 09
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

Google announces urban driving milestone

News from Google’s project is rare, but today on the Google blog they described new achievements in urban driving and reported a number of 700,000 miles. The car has been undergoing extensive testing in urban situations, and Google let an Atlantic reporter get a demo of the urban driving which is worth a read.

You will want to check out the new video demo of urban operations:

While Google speakers have been saying for a while that their goal is a full-auto car that does more than the highway, this release shows the dedication already underway towards that goal. It is the correct goal, because this is the path to a vehicle that can operate vacant, and deliver, store and refuel itself.

Much of the early history of development has been on the highway. Most car company projects have a focus on the highway or traffic jam situations. Google’s cars were, in years past, primarily seen on the highways. In spite of the speed, highway driving is actually a much easier task. The traffic is predictable, and the oncoming traffic is physically separated. There are no cyclists, no pedestrians, no traffic lights, no stop signs. The scariest things are on-ramps and construction zones. At low speed the highway could even be considered a largely solved problem by now.

Highway driving accounts for just over half of our miles, but of course not our hours. A full-auto car on the highway delivers two primary values: Fewer accidents (when delivered) and giving productive time back to the highway commuter and long distance traveller. This time is of no small value, of course. But the big values to society as a whole come in the city, and so this is the right target. The “super-cruise” products which require supervision do not give back this time, and it is debatable if they give the safety. Their prime value is a more relaxing driving experience.

Google continues to lead its competitors by a large margin. (Disclaimer: They have been a consulting client of mine.) While Mercedes — which is probably the most advanced of the car companies — has done an urban driving test run, it is not even at the level that Google was doing in 2010. It is time for the car makers to get very afraid. Major disruption is coming to their industry. The past history of high-tech disruptions shows that very few of the incumbent leaders make it through to the other side. If I were one of the car makers who doesn’t even have a serious project on this, I would be very afraid right now.

New regulations are banning the development of delivery robots

Many states and jurisdictions are rushing to write laws and regulations governing the testing and deployment of robocars. California is working on its new regulations right now. The first focus is on testing, which makes sense.

Unfortunately the California proposed regulations and many similar regulations contain a serious flaw:

The autonomous vehicle test driver is either in immediate physical control of the vehicle or is monitoring the vehicle’s operations and capable of taking over immediate physical control.

This is quite reasonable for testing vehicles based on modern cars, which all have steering wheels and brakes with physical connections to the steering and braking systems. But it presents a problem for testing delivery robots or deliverbots.

Delivery robots are world-changing. While they won’t and can’t carry people, they will change retailing, logistics, the supply chain, and even going to the airport in huge ways. By offering very quick delivery of every type of physical goods — less than 30 minutes — at a very low price (a few pennies a mile) and on the schedule of the recipient, they will disrupt the supply chain of everything. Others, including Amazon, are working on doing this by flying drone, but for delivery of heavier items and efficient delivery, the ground is the way to go.

While making fully unmanned vehicles is more challenging than ones supervised by their passenger, the delivery robot is a much easier problem than the self-delivering taxi for many reasons:

  • It can’t kill its cargo, and thus needs no crumple zones, airbags or other passive internal safety.
  • It still must not hurt people on the street, but its cargo is not impatient, and it can go more slowly to stay safer. It can also pull to the side frequently to let people pass if needed.
  • It doesn’t have to travel the quickest route, and so it can limit itself to low-speed streets it knows are safer.
  • It needs no windshield or wheel, and can be small, light and very inexpensive.

A typical deliverbot might look like little more than a suitcase sized box on 3 or 4 wheels. It would have sensors, of course, but little more inside than batteries and a small electric motor. It probably will be covered in padding or pre-inflated airbags, to assure it does the least damage possible if it does hit somebody or something. At a weight of under 100lbs, with a speed of only 25 km/h and balloon padding all around, it probably couldn’t kill you even if it hit you head on (though that would still hurt quite a bit.)

The point is that this is an easier problem, and so we might see development of it before we see full-on taxis for people.

But the regulations do not allow it to be tested. The smaller ones could not fit a human, and even if you could get a small human inside, they would not have the passive safety systems in place for that person — something you want even more in a test vehicle. They would need to add physical steering and braking systems which would not be present in the full drive-by-wire deployment vehicle. Testing on real roads is vital for self-driving systems. Test tracks will only show you a tiny fraction of the problem.

One way to test the deliverbot would be to follow it in a chase car. The chase car would observe all operations, and have a redundant, reliable radio link to allow a person in the chase car to take direct control of any steering or brakes, bypassing the autonomous drive system. This would still be drive-by-wire(less) though, not physical control.

These regulations also affect testing of full drive-by-wire vehicles. Many hybrid and electric cars today are mostly drive-by-wire in ordinary operations, and the new Infiniti Q50 features the first steer-by-wire. However the Q50 has a clutch which, in the event of system failure, reconnects the steering column and the wheels physically, and the hybrids, even though they do DBW regenerative braking for the first part of the brake pedal, if you press all the way down you get a physical hydraulic connection to the brakes. A full DBW car, one without any steering wheel like the Induct Navia, can’t be tested on regular roads under these regulations. You could put a DBW steering wheel in the Navia for testing but it would not be physical.

Many interesting new designs must be DBW. Things like independent control of the wheels (as on the Nissan Pivo) and steering through differential electric motor torque can’t be done through physical control. We don’t want to ban testing of these vehicles.

Yes, teams can test regular cars and then move their systems down to the deliverbots. This bars the deliverbots from coming first, even though they are easier, and allows only the developers of passenger vehicles to get in the game.

So let’s modify these regulations to either exempt vehicles which can’t safely carry a person, or which are fully drive-by-wire, and just demand a highly reliable DBW system the safety driver can use.

Can they make a better black box pinger?

I wrote earlier on how we might make it easier to find a lost jet and this included the proposal that the pingers in the black boxes follow a schedule of slowing down their pings to make their batteries last much longer.

In most cases, we’ll know where the jet went down and even see debris, and so getting a ping every second is useful. But if it’s been a week, something is clearly wrong, and having the pinger last much longer becomes important. It should slow down, eventually dropping to intervals as long as one minute, or even an hour, to keep it going for a year or more.

But it would be even more valuable if the pinger was precise about when it pinged. It’s easy to get very accurate clocks these days, either sourced from GPS chips (which cost $5) or just synced on occasion from other sources. Unlike GPS transmitter clocks, which must sync to the nanosecond, here even a second of drift is tolerable.

The key is that the receiver who hears a ping must be able to figure out when it was sent, because if they can do that they can get the range, and even a very rough range is magic when it comes to finding the box. Just 2 received pings from different places with range will probably find the box.

I presume the audio signal is full of noise and you can’t encode data into it very well, but you can vary the interval between pings. For example, while a pinger might bleep every second, every 30 seconds it could ping twice in a second. Any listener who hears 30 seconds of pings would then know the pinger’s clock and when each ping was sent. There could be other variations in the intervals to help pin the time down even better, but it’s probably not needed. In 30 seconds, sound travels 28 miles underwater, and it’s unlikely you would hear the ping from that far away.

When the ping slows down as battery gets lower, you don’t need the variation any more, because you will know that pings are sent at precise seconds. If pings are down to one a minute, you might hear just one, but knowing it was sent at exactly the top of the minute, you will know its range, at least if you are within 50 miles.

Of course things can interfere here — I don’t know if sound travels with such reliable speed in water, and of course, waves bounce off the sea floor and other things. It is possible the multipath problem for sound is much worse than I imagine, making this impossible. Perhaps that’s why it hasn’t been done. This also adds some complexity to the pinger which they may wish to avoid. But anything that made the pings distinctive would also allow two ships tracking the pings to know they had both heard the same particular ping and thus solve for the location of the pinger. Simple designs are possible.

Two way pinger

If you want to get complex of course you could make the pinger smart, and listening for commands from outside. Listening takes much less power, and a smart pinger could know not to bother pinging if it can’t hear the ship searching for it. Ships can ping with much more volume, and be sure to be heard. While there is a risk a pinger with a broken microphone might not understand it has a broken microphone, otherwise, a pinger should sit silent until it hears request pings from ships, and answer those. It could answer them with much more power and thus more range, because it would only ping when commanded to. It could sit under the sea for years until it heard a request from a passing ship or robot. (Like the robots made by my friends at Liquid Robotics, which cruise unmanned at 2 knots using wave power and could spend years searching an area.)

The search for MH370 has cost hundreds of millions of dollars, so this is something worth investigating.

Other more radical ideas might be a pinger able to release small quantities of radioactive material after waiting a few weeks without being found. Or anything else that can be detected in extremely minute concentrations. Spotting those chemicals could be done sampling the sea, and if found soon enough — we would know exactly when they would be released — could help narrow the search area.

Track the waves

I will repeat a new idea I added to the end of the older post. As soon as the search zone is identified, a search aircraft should drop small floating devices with small radio transmitters good to find them again at modest range. Drop them as densely as you can, which might mean every 10 miles or every 100 miles but try to get coverage on the area.

Then, if you find debris from the plane, do a radio hunt for the nearest such beacon. When you find it, or others, you can note their serial number, know where they were dropped, and thus get an idea of where the debris might have come from. Make them fancier, broadcasting their GPS location or remembering it for a dump when re-collected, and you could build a model of motion on the surface of the sea, and thus have a clue of how to track debris back to the crash site. In this case, it would have been a long time before the search zone was located, but in other cases it will be known sooner.

Conspiracy theory!

Reporting has not been clear, but it appears that the ships which heard the pings did so in the very first place they looked. With a range of only a few miles, that seems close to impossibly good luck. If it turns out they did hear the last gasp of the black boxes, this suggests an interesting theory.

The theory would be that some advanced intelligence agencies have always known where the plane went down, but could not reveal that because they did not want reveal their capabilities. A common technique in intelligence, when you learn something important by secret means, is to then engineer another way to learn that information, so that it appears it was learned through non-secret means or luck. In the war, for example, spies who broke enemy codes and learned about troop movements would then have a “lucky” recon plane “just happen” to fly over the area, to explain how you knew where they were. Too much good luck and they might get suspicious, and might learn you have broken their crypto.

In this case the luck is astounding. Yes, it is the central area predicted by the one ping found by Inmarsat, but that was never so precise. In this case, though, all we might discern — if we believe this theory at all — is that maybe, just maybe, some intelligence agency among the countries searching has some hidden ways to track aircraft. Not really all that surprising as a bit of news, though.

Let’s hope they do find what’s left — but if they do, it seems likely to me it happened because the spies know things they aren’t telling us.

Robocar Prize in India, New Vislab car

I read a lot of feeds, and there are now scores of stories about robocars every week. Almost every day a new publication gives a summary of things. Here, I want to focus on things that are truly new, rather than being comprehensive.

Mahindra “Rise” Prize

The large Indian company Mahindra has announced a $700,000 Rise prize for robocar development for India’s rather special driving challenges. Prizes have been a tremendous boost to robocar development and DARPA’s contests changed the landscape entirely. Yet after the urban challenge, DARPA declared their work was done and stopped, and in spite of various efforts to build a different prize at the X-Prize foundation, the right prize has never been clear. China has annual prizes and has done so for several years, but they get little coverage outside of China.

An Indian prize has merit because driving in India is very much different, and vastly more chaotic than most of the west. As such, western and east Asian companies are unlikely to spend a lot of effort trying to solve the special Indian problems first. It makes sense to spur Indian development, and of course there is no shortage of technical skill in India.

Many people imagine that India’s roads are so chaotic that a computer could never drive on them. There is great chaos, but it’s important to note that it’s slow chaos, not fast chaos. Being slow makes it much easier to be safe. Safety is the hard part of the problem. Figuring out just what is happening, playing subtle games of chicken — these are not trivial, but they can be solved, if the law allows it.

I say if the law allows it because Indians often pay little heed to the traffic law. A vehicle programmed to strictly obey the law will probably fail there without major changes. But the law might be rewritten to allow a robot to drive the way humans drive there, and be on an open footing. The main challenge is games of chicken. In the end, a robot will yield in a game of chicken and humans will know that and exploit it. If this makes it impossible for the robot to advance, it might be programmed to “yield without injury” in a game of chicken. This would mean randomly claiming territory from time to time, and if somebody else refuses to yield, letting them hit you, gently. The robot would use its knowledge of physics to keep the impact low enough speed to cause minor fender damage but not harm people. If at fault, the maker of the robot would have to pay, but this price in damage to property may be worthwhile if it makes the technology workable.

The reason it would make things workable is that once drivers understood that, at random, the robot will not yield (especially if it has the right-of-way) and you’re going to hit it. Yes, they might pay for the damage (if you had the right of way) but frankly that’s a big pain for most people to deal with. People might attempt insurance fraud and deliberately be hit, but they will be recorded in 3D, so they had better be sure they do it right, and don’t do it more than once.

Of course, the cars will have to yield to pedestrians, cylists and in India, cows. But so does everybody else. And if you just jump in front of a car to make it hit the brakes, it will be recording video of you, so smile.

New Vislab Car

I’ve written before about Vislab at the University of Parma. Vislab are champions of using computer vision to solve the driving problem, though their current vehicles also make use of LIDAR, and in fact they generally agree with the trade-offs I describe in my article contrasting LIDAR and cameras.

They have a new vehicle called DEEVA which features 20 cameras and 4 lasers. Like so many “not Google” projects, they have made a focus on embedding the sensors to make them not stand out from the vehicle. This continues to surprise me, because I have very high confidence that the first customers of robocars will be very keen that they not look like ordinary cars. They will want the car to stand out and tell everybody, “Hey, look, I have a robocar!” The shape of the Prius helped its sales, as well as its drag coefficient.

This is not to say there aren’t people who, when asked, will say they don’t want the car to look too strange, or who say, looking at various sensor-adorned cars, that these are clearly just lab efforts and not something coming soon to roads near you. But the real answer is neither ugly sensors nor hidden sensors, but distinctive sensors with a design flair.

More interesting is what they can do with all those cameras, and what performance levels they can reach.

I will also note that car uses QNX as its OS. QNX was created by friend I went to school with in Waterloo, and they’re now a unit of RIM/Blackberry (also created by classmates of mine.) Go UW!

Solving the problem of money and politics

A recent Surpreme court case which struck down limits on the total amount donors could provide to a large group of candidates has fired up the debate on what to do about the grand problem, particularly in the USA, of the corrupting influence of money on politics. I have written about this before in my New Democracy Topic, including proposals for anonymous donations, official political spam and many others.

As I strongly believe that it is very difficult to draft campaign finance rules that don’t violate the 1st amendment (the Supreme court agrees) and also that it would be a horrible, horrible decision to weaken the 1st amendment to solve this problem, nasty as the problem is, I have been working on alternate solutions. (I also don’t believe any of the proposed weakenings of the 1st amendment would actually work and not backfire.)

I am going to do a series here on those solutions over time, but first I want to lay out my perceptions of the various elements of the problem, for it is necessary to understand them to fix them. While political corruption is rife anywhere, the influence of big money seems most widespread in the USA.

Problem 1: Politicians feel they can’t get elected without spending a lot of money

Ask any member of congress what they did on their first day in office. The answer will be “made calls to donors.” They are always fundraising, because they don’t think they can get elected without it. They generally resent this, which is a ray of hope. If they thought they had a choice, that they could get elected without fundraising, they would reduce it a lot.

One thing that’s not easy to fix is the fact that if you fundraise, those who give you money will expect something for it, which is the thing we’re trying to eliminate. Even if the donors don’t ever explicitly state that expectation, it is always there, because every candidate will ask if what they are doing will piss off the donors, even more than they will ask what will piss off the voters. If you depend on the donations, you will do what it takes to keep them coming. Donations get a donor’s phone calls and letters answered, as well as requests for meetings.

I say that politicians feel they need money, and in fact they are often right about this. Money does produce votes. But neither are they totally right, as there are alternatives.

As noted in the comments, the length of campaigns plays a role in how much money people need to raise. Due to fixed election dates, US election campaigns are extremely long compared to other countries. (In Canada, an election might be called at any time, and takes place in as little as 36 days. Fundraising is often done in advance, of course, but there is only a little time in which to spend the money.)

The most common proposed solution here is public campaign finance, but I am developing alternatives to that or systems which could work in combination with that.

Problem 2: The main reason they need money is to buy TV ads

About 60% of the budget of a big campaign is spent on ads, most of them on TV. Today online advertising is just 10% of TV.

There is a reason they love TV. It gets to most demographics, and your message can be very dramatic and convincing. Most of all, you reach people who were not looking for your message. Everybody has a web site, but the web site only is seen by people who actively sought it out. TV gets into the homes of an ordinary voter and gives you a shot at influencing them. Other forms of advertising do that too, but few do it as well as TV.

This aspect of the problem is important because we’re in the middle of a big shift in the nature of advertising. The new advertising giant, Google, is a relatively new company with entirely different methods. We’re also in the middle of a big shift in media. Broadcast media, I feel, are on the decline, and new media forms, mostly online forms, are likely to take the lead. When this happens — and I say when, not if — it means that most of the donated political money will flow to the new media. This gives the new media a chance to either be the destination for all corruption money or to change the rules of the game, if they have the courage to do so.

In many cases, the world of advertising hasn’t simply moved form one company to a competitor. In the case of newspaper classified advertising, that industry was just supplanted by free online ads like craigslist. Thanks to internet media, publishing is now cheap or almost free, and advertising is much more efficient and in some areas, cheaper. The potential for disruption is ripe.

Problem 3: The other big effort is “Get out the Vote”

While most of the dollars go to advertising, a lot of them, and most of the volunteer time, goes to what they call GOTV.

GOTV is so important because US voter turnouts are low. 50-60% in Presidential years, less in off-years. Because of that, by far the most productive use of campaign resources is often not trying to convince an undecided or opposing voter to switch to your side, but simply getting a voter who already supports you but doesn’t care a great deal to actually make the trek to the polls on voting day.

While you might imagine elections are fought and won with one candidate’s ads or speeches or debate performance swaying undecided voters one way or another, the reality is that turnouts are so low that GOTV is what decides a lot of races.

Aside from the basic principle that it’s crazy to decide our leaders based on who has the best system of pushing apathetic voters to come to the polls, it’s also true that GOTV uses a lot of money and resources, and as such is another of the big reasons for problem #1. A lot of the advertising purchased is bought to make existing supporters more likely to turn out as much as it’s there to sway undecideds.

There are many areas for solution here, including increasing the voter turnout to a level where GOTV is not so productive. For example, in many countries, voting is mandatory — you are fined if you don’t vote. Chile gets 95% turnout this way, and Australia at 81% is the worst turnout of the compulsory nations.

It is also possible to increase turnout by making voting super-easy. Options such as online or cell-phone voting, while rife with election security and privacy problems, may be worth the risk if they reduce the power of GOTV — or simply make GOTV much cheaper.

Problem 4: Other campaign costs

While they are in 3rd place, the other campaign costs — travel, events, databases, staff, candidate’s time and many other things — still add up to a lot, and it’s money that must be fundraised. Today, all candidates build impressive computer systems from scratch every 4 years. After the election the system is discarded, because in 4 years, technology will have changed so much it is better to rewrite it from scratch.

Elections, however, are taking place every month around the world, which would justify the constant development of generalized campaign tools. If done open source, they could easily be free to campaigns, saving them lots of resources — and the need to raise money for them.

Problem 5: Buying influence pays off

Candidates raise money because they have to, but donors give it because they get good value in return. Yes, some get the “pure” good value they are supposed to get — the hope that they get a better candidate elected, who will run things closer to the way they want. In a general “for the country” sense, not in a personal benefit sense, but even that’s technically OK if it does not involve doing personal favours.

Sadly, they usually get much more than that. They get personal benefit, even the ability to write drafts of laws and stop laws they dislike. Congress members even have a semi-official “pork” system which spreads federal money around districts, to please voters and also donors.

Worst of all, buying influence can be profitable from a pure financial sense. While Shel Adelson might give money to support his views on foreign policy, corporations and many others give money because they feel they will make a profit in the bottom line. As soon as this profit is possible, it’s almost impossible to stop money from flowing in, no matter what rules you make. (It might be noted that Libertarians believe one of the most compelling arguments for keeping the government out of the economy is that a government that has no ability to hurt or benefit economic interests is one that can’t be bribed to hurt or benefit economic interests.)

This is also what makes corporations interested in donations. Corporations, at least in the pure sense, are interested only in the bottom line, and have a fiduciary duty to the stockholders to care only about shareholder value. Some closely held corporations will also take actions based on direct shareholder political interests, and some corporations, like PACs exist to do nothing else but that.

Some solutions can come from changing the system so that it’s just not as productive to buy politicians. This requires new rules on how they vote, which are hard to get. An ideal system might demand that officials recuse themselves from any vote on any bill which would unduly benefit any of their constituents or voters. Vote trading would attempt to get around this, but it seems crazy that today we think it is their job to look out for their constituents (and unofficially their donors) at the expense of the rest of the country.

The most common solution for this problem is to limit donations, with caps for each donor, and also caps on amount raised or amount spent. Success is highly mixed in this area.

Paths to improvement

These nexus points, notable #1, #2 and #5, are the place to look for solutions. While problem #1 can be addressed with limits on donations, fundraising and spending (otherwise known as Campaign Finance Reform) this approach is very challenging. Because of problem #5 in particular, money will “find a way” like water flowing downhill. You may put up a dam but the water will find another channel if it can.

The only defence against issue #5 — that buying politicians is lucrative — is to combine the politician’s core dislike of fundraising with efforts to make it a bit less productive to buy politicians. While money will always try to buy them, if the price goes up, and the need for the money goes down, there can be improvement.

One of the most popular proposals to fix #1 is public funding of campaigns, combined with mandatory or optional limits on fundraising or spending. The latter limits are hard to do under the 1st amendment. This is not because “corporations are people” (a strange meme because that idea never appears in the Citizens United decision that many people imagine it came from) but because freedom of the press, especially for political speech, is not divisible in the 1st amendment. It has always been given to corporations (including ones like the New York Times corporation) and in fact for a century or more, until the rise of the blogging era, almost all press of significance have been corporations.

Attempts to limit what sort of political ads that rich people and corporations may run are extremely difficult under the 1st amendment, as the court has said, and in spite of the terrible problem caused by the influence of money in politics, the 1st amendment deservedly remains untouched. Much of the argument around this case (and Citizen’s United) has been of the form, “Corruption is horribly bad, so the court should decide the 1st amendment doesn’t protect it.” Many things the 1st amendment protects are bad, but we’ve decided letting the government decide which are good or bad is worse. Here, we can add to that the important sense that giving congress extra control over how their elections are run is another very bad idea.

In coming weeks, I will outline alternate solutions. But I also believe neither I, nor anybody else have thought up all the possible solutions. Politics, advertising and media are in a state of flux thanks to new technologies that I and my compatriots have built. Whether you think the future is bright or dark, I can assure you it’s different, and may options for solution to this problem are out there, even those we may not see as yet.

Cranes, and rooftops, should be decorated

Look at the skyline of any growing city, and what do you see, but a sea of construction cranes. The theory is that each crane will go away and be replaced by an architectually interesting or pleasing building, but the cycle continues and there are always cranes.

My proposal: An ordinance requiring aesthetic elements on construction cranes. Make them look beautiful. Make them look like the birds they are named after, or anything else. Get artists to design them as grand public art installations. Obviously you can’t increase the weight a lot, or cut the visibility of the operator too much, but leave that as a challenge to the artists. And give us a city topped with giant works of art instead of eyesores.

While we’re building these skyscrapers, it seems to me we also don’t seem to care about the aesthetics of our cities from above. The view from the towers, or incoming aircraft bringing in fresh visitors, is of ugly rooftops, covered with ugly pipes, giant air conditioners and spaces everybody imagines that nobody sees. Yet we all see them.

Compare that with many European hillside towns where everybody knew they would be seen from above. At least in the old days, the roofs were crafted with the same care as the house. Today, that’s been changing, and many roofs are covered with antennas, satellite dishes and in the middle east, black water heaters. We care a lot about how our houses look from the curb, and we imagine people don’t see the roof. But we do.