• Jan
  • Feb
  • Mar
  • Apr
  • May
  • Jun
  • Jul
  • Aug
  • Sep
  • Oct
  • Nov
  • Dec

Robocar Parking

In my earlier article on robocar challenges I gave very brief coverage to the issue of parking. Challenged on that, I thought it was time to expand.

The world “parking” means many things, and the many classes of parking problems have varying difficulties.

The taxi doesn’t park

One of the simplest solutions to parking involves robotaxi service. Such vehicles don’t really park, at least not where they dropped you off. They drop you off and go to their next customer. If they don’t have another ride, they can deliberately go to a place where they know they can easily park to wait. They don’t need to tackle a parking space that’s challenging at all.

Simple non-crowded lots

Parking in basic parking lots — typical open ground lots that are not close to full — is a pretty easy problem. So easy in fact, that we’ve seen a number of demonstrations, ranging back to Junior 3 and Audi Piloted Parking. Cars in the showroom now will identify parking spots for you (and tell you if you fit.) They have done basic parallel parking (with you on the brakes) for several years, and are starting to now even do it with you out of the car (but watching from a distance.) At CES VW showed the special case of parking in your own garage or driveway, where you show the car where it’s going to go.

The early demos required empty parking lots with no pedestrians, and even no other moving cars, but today reasonably well-behaved other cars should not be a big problem. That’s the thing about non-crowded lots: People are not hunting or competing for spaces. The robocars actually would be very happy to seek out the large empty sections at the back of most parking lots because you aren’t going to be walking out that far, the car is going to come get you.

The biggest issue is the question of pedestrians who can appear out from behind a minivan. The answer to this is simply that vehicles that are parking can and do go slow, and slow automatically gives you a big safety boost. At parking lot speed, you really can stop very quickly if a pedestrian appears out of nowhere. The car, after all, is not in a hurry, and can slow itself when close to minivans, or if it has noticed pedestrians who are moving near it and have disappeared behind vehicles. Out at the back of a parking lot, nobody cares if you go 5 km/h, or even right down the center of the lane to assure there are no surprises.

To the right we see a picture of Junior 3 entering a parking lot, hunting for a space and taking it — in 2009.


Mapping is still desirable for parking lots. This is particularly true because parking lots, not being public roads, set up their own sets of rules and put up signs meant only for humans. They may direct traffic to be one-way in certain areas in nonstandard ways. They may have gates when you have to pay or insert tickets. Parking spots will be marked reserved for certain cars (Electric vehicle, expectant mother, wheelchair, employee of the month, CEO, customers of company X) with signs meant for humans.

It’s not necessarily super hard to map a parking lot, just time consuming to encode all these rules. Unlike roads, which everybody drives, any given parking lot likely only serves the people who live, work or shop next to it — you will never park in 95% of the lots in your city, though you will drive most of its main roads. Somebody has to pay for the cost of that mapping — either because lots of people want to use the lot, or because the owner of the lot wants to encourage robocars. Fortunately, with the robocars doing things like using the least popular spots, or even valet parking as described below, there is a strong incentive to the owner of a lot to get it mapped and keep it mapped. Only lots that never fill out would have no incentive, and those lots can often be parked in without a map.

While you want trained mappers to confirm the geometry of a parking lot, coding in the signs and special rules is a task easily left to the parking lot owner. If the lot manager forgets to tag the CEO’s space as reserved, nobody is hurt (except the lot manager when the CEO arrives.)

Robocar parking mistakes are easy to fix. Robocars can put a phone number or URL on the back where you can go to complain about a robocar that is parked badly or blocking things. As long as that doesn’t happen too often, the cost of the support desk is manageable. The folks at the support desk can look out with the robot’s sensors and tell it to move. It’s not like finding a human driven car blocking something, where you have to find the owner. In a minute, the robocar will be gone.

More crowded lots

The challenge of parking lots, in spite of the low speeds, is that they don’t have well defined rules of the road. People ignore the arrows on the ground. They pause and wait for cars to exit. In really crowded lots, cars follow people who are leaving at walking speed, hoping to get dibs on their spot. They wait, blocking traffic, for a spot they claim as theirs. People fight for spots and steal spots. People park badly and cross over the lines.

As far as I know, nobody has tried to solve this challenge, and so it remains unsolved. It is one of the few problems in robocars that actually deserves the label of “AI,” though some think all driving is AI.

Even so, on the grand scheme of things, my intuition is that this is not one of the grand unsolved challenges of AI. Parking lots don’t have legalized rules of the road, but they do have rules and principles, and we all learn them the more we park. Creating a system that can do well with these rules using various AI tools seems like a doable challenge when the time comes. My intuition is that it’s a lot easier than winning on Jeopardy. This system will be able to take advantage of a couple of special abilities of the robocars:

  • They will be able to park and exit spots quickly and efficiently. They won’t be like the people you always see who do a 5 point turn to exit their parking spot when you (but not they) can see they still have 5 feet of room behind them.
  • In general, they will be superb parkers, centering themselves as well as possible inside spots
  • They don’t need room to open their doors, so they can park right next to walls and pillars.
  • Yes, they could also park right next to badly parked cars which have encroached into other spaces and thus made a space no human can use. There is a risk of course that the bad parker, who finds they can’t get in one side, might retaliate. (I’ve had a guy rip my mirror off in revenge.) In this case, though, they will have a photo of the licence plate and a sensor record of the revenge taking place!
  • In the event of problems or deadlock, they are open to the idea of just giving up and parking somewhere farther away that is easier to park in. Unlike humans they could drive as quickly in reverse as forward to back out of situations.

In spite of all this, the cars will want to avoid the full parking lots where the chaos happens. If there is another lot not far away, they will just go there, and require a couple minutes more advance notice from their master when summoned to pick them up. If there is nowhere nearby to park, the car will tell its passenger that she has to do the parking.

Robo-valet zones

Even in the most crowded lots, there is the potential to easily create zones of the parking lot that are marked:

“Robot Valet Parking only. All other cars may be blocked in or towed. No pedestrians.”

In the car’s map, it will indicate what server is handling the robo-valet section, though it is possible to have it work without any communication at all.

In the most basic version the car would ask permission to enter the lot. The database might even assign it a spot, but generally it would just enter and take any spot. By “any spot”, I mean any piece of pavement, ignoring the lines on the ground. At first the cars would choose spots that let them have an unblocked pack to leave. As soon as too many cars arrive to do that, they would switch to a more dense, valet pattern that blocks in some cars (the ones who said they were leaving latest.) It would report where it parked to the database, as well as how to send it a message, and when it expects to leave.

Other cars would arrive. Eventually one would block in your car. If the database has given them a way to communicate (probably over the internet, though if they had V2V they could use that) they might discuss who plans to leave first, and the cars would adjust themselves to put the cars that will leave sooner at the front. This is strongly in the interests of the cars. If you plan to be there a while, you want to go to the back so you don’t have to keep moving to let cars behind you out. But it still works, just not as well, if the cars just take any available spot.

When it’s time to leave, the cars could try to send a message over the data networks to the cars in front of them, but a simpler approach might be to just nudge slightly forward — a few cm will do it. This will cause the car in the direction of the nudge to notice, and it too would nudge forward, and so on, and so on until the front car moves out, and then all the cars in that row can move out, including your car, which leaves the lot. Then the other cars can move in to fill the spot. If they have a database which maps the cars in that section, they could try to be clever in how they re-fill the empty column to minimize movement.

There are even faster algorithms if you leave a few empty spaces. Robocars have the ability to move in concert to “move the space” and put it next to a car that wants to exit. It’s more efficient, but not needed.

The database becomes more useful if a human driver ignores the signs and tries to park in the lot. That’s because the database is the simplest way of spotting a vehicle that’s not supposed to be there. As a first step, the cars in the lot could start flashing their lights and honking their horns at the interloper, or even speak human language messages out a speaker. “Hey, this is the robot valet lot, you are blocking me in! We’re calling a tow truck to come remove you if you don’t leave.” Some idiots may still try, and the robots could arrange so that almost all of them can still get out, and if not, they might call that tow truck.

The robo-valet section can be at the back of the parking lot, or the top of a structure — those places the humans park in last. The owner of the lot has a huge incentive to do this, since they can make much more efficient use of their land with the tight valet-dense parking. All the owner has to do is register the lot section in a database — a database that a company like Google would probably be happy to offer for free to benefit their cars.

Human valets could also park cars in this area. They would just need to use an app on their smartphone that tells them where to park and allows them to register that they did it. The robots will want the human-parked cars to park at the back, because they will move out of the way when it’s time for the human parked car to be driven back out.

The main requirements for this parking area would be that it be reachable from the outside without going through a zone of chaos, and that it then be possible to also reach the pickup/dropoff point for passengers without the risk of getting stuck in chaos. Larger lots tend to have entrance lanes without spots on them that serve this purpose.

Pedestrians will still enter the lot, in spite of the sign. Just go extra slow if they are there, and perhaps talk to them and ask them to leave. While you won’t actually present a danger to them at your low speed, they probably will heed the advice of 3000lb robots. Perhaps tell them they have 15 seconds to put down their weapon.

Robotic sign?

To get really clever, the sign marking the border of the Robo-Valet area might itself be on a small robot. Thus, when the robo-valet area gets full, the sign can move to expand the area if space is available. You could expand even into areas occupied by human-parked cars — just know that they are there and don’t block them in — or move out of their way when needed. Eventually they leave and only robocars enter.

When the demand goes down, the sign can easily move to shrink the valet area.

The world needs standardized LEDs which adjust brightness

I’m sure, like me, you have lots of electronic gadgets that have status LEDs on them. Some of these just show the thing is on, some blink when it’s doing things. Of late, as blue LEDs have gotten cheap, it has been very common to put disturbingly bright blue LEDs on items.

These become much too bright at night, and can be a serious problem if the device needs to be in a bedroom or hotel room. Which things like laptops, phone and camera chargers and many other devices need to do. I end up putting small pieces of electrical tape over these blue LEDs.

I call upon the factories of Shenzen and elsewhere to produce low cost, standardized status LEDs. These LEDs will come with an included photosensor that measures the light in the room, and adjusts the LED so that it is just visible at that lighting level. Or possibly turns it off in the dark, because do we really need to know that our charger is on after we’ve turned off the lights?

Of course, one challenge is that the light from the LED gets into the photosensor. For most LEDs, the answer is pretty easy — put a filter that blocks out the colour of the LED over the photosensor. If you truly need a white LED, you could make a fancy circuit that turns it off for a few milliseconds every so often (the eye won’t notice that) and measures the ambient light while it’s off. All of this is very simple, and adds minimally to the cost. (In fact, the way you adjust the brightness of an LED is typically to turn it on and off very fast.)

Get these made and make it standard that all our gear uses them for status LEDs. Frankly, I think it would be a good idea even for consumer goods that don’t get into our bedrooms. My TV rooms and computer rooms don’t need to look like Christmas scenes.

Detroit Auto Show and more news

Robocar news continues after CES with announcements from the Detroit Auto Show (and a tiny amount from the TRB meeting.)

Google doesn’t talk a lot about their car, so address by Chris Urmson at the Detroit Auto Show generated a lot of press. Notable statements from Chris included:

  • A timeline of 2 to 5 years for deployment of a vehicle
  • Public disclosure that Roush of Michigan acted as contract manufacturer to build the new “buggy” models — an open secret since May
  • A list of other partners involved in building the car, such as Continental, LG (batteries), Bosch and others.
  • A restatement that Google does not plan to become a car manufacturer, and feels working with Detroit is the best course to make cars
  • A statement that Chris does not believe regulation will be a major barrier to getting the vehicles out, and they work regularly to keep NHTSA informed
  • A few more details about Google’s own LIDAR, indicating that units are the size of coffee cups. (You will note the new image of the buggy car does not have a Velodyne on the roof.)
  • More indication that things like driving in snow are not in the pipeline for the first vehicles

Almost all of this has been said before, though the date forecasts are moved back a bit. That doesn’t surprise me. As Google-watchers know, Google began by doing extensive, mostly highway based testing of modified hybrid cars, and declared last May that they were uncomfortable with the safety issues of doing a handoff to a human driver, and also that they have been doing a lot more on non-highway driving. This culminated with the unveiling of the small custom built buggy with no steering wheel. The shift in direction (though the Lexus cars are still out there) will expand the work that needs to be done.

Car company announcements out of the Detroit show were minor. The press got all excited when one GM executive said they “would be open to working with Google.” While I don’t think it was actually an official declaration, Google has said many times they have talked to all major car companies, so there would be no reason for GM to go out to the press to say they want to talk to Google. Much PR over nothing, I suspect.

Ford, on the other hand, actually backtracked and declared “we won’t be first” when it comes to this technology. I understand their trepidation. Being first does not mean being the winner in this game. But neither does being 2nd — there will be a time after which the game is lost.

There were concept vehicles displayed by Johnson Controls (a newcomer) and even a Chinese company which put a fish tank in the rear of the car. You could turn the driver’s seat around and watch your fish. Whaa?

In general, car makers were pushing their dates towards 2025. For some, that was a push back from 2020, for others a push forward from 2030, as both of those numbers have been common in predictions. I guess now that it’s 2015, 2020 is just to realistic a number to make an uncertain prediction about.

Earlier, Boston Consulting Group released a report suggesting robocars would be a $42B market in 2025 — the car companies had better get on it. With the global ground transportation market in the range of $7 trillion in my guesstimate, that’s a drop in the bucket, but also a huge number.

News from the Transportation Research Board annual meeting has been sparse. The combined conference of the TRB and AUVSI on self-driving cars in the summer has been the go-to conference of late, and other things usually happen at the big meeting. Released research suggested 10% of vehicles could be robocars in 2035 — a number I don’t think is nearly aggressive enough.

There also was tons of press over the agreement between NASA Ames and Nissan’s Sunnyvale research lab to collaborate. Again, not a big surprise, since they are next door to one another, and Martin Sierhuis the director of the research lab made his career over at Nasa. (Note of disclosure: I am good friends with Martin, and Singularity U is based at the NASA Research Park.)

Day 3 of CES -- BMW and robots

Day 3 at CES started with a visit to BMW’s demo. They were mostly test driving new cars like the i3 and M series cars, but for a demo, they made the i3 deliver itself along a planned corridor. It was a mostly stock i3 electric car with ultrasonic sensors — and the traffic jam assist disabled. When one test driver dropped off the car, they scanned it, and then a BMW staffer at the other end of a walled course used a watch interface to summon that car. It drove empty along the line waiting for test drives, and then a staffer got in to finish the drive to the parking spot where the test driver would actually get in, unfortunately.

Also on display were BMW’s collision avoidance systems in a much more equipped research car with LIDARs, Radar etc. This car has some nice collision avoidance. It has obstacle detection — the demo was to deliberately drive into an obstacle, but the vehicle hits the brakes for you. More gently than the Volvo I did this in a couple of years ago.

More novel is detection of objects you might hit from the side or back in low speed operations. If it looks like you might sideswipe or back into a parking column or another car, the vehicle hits the brakes on you (harder) to stop it from happening.

Insurers will like this — low speed collisions in parking lots are getting to be a much larger fraction of insurance claims. The high speed crashes get all the attention, but a lot of the payout is in low speed.

I concluded with a visit to my favourite section of CES — Eureka Park, where companies get small lower cost booths, with a focus on new technology. Also in the Sands were robotics, 3D printing, health, wearables and more — never enough time to see it all.

I have added 12 more photos to my gallery, with captions — check the last part out for notes on cool products I saw, from self-tightening belts and regenerating roller skates to phone-charging camping pots.

CES Day 2 Gallery and notes

After a short Day 1 at CES a more full day was full of the usual equipment — cameras, TVs, audio and the like and visits to several car booths.

I’ve expanded my gallery of notable things with captions with cars and other technology.

Lots of people were making demonstrations of traffic jam assist — simple self-driving at low speeds among other cars. All the demos were of a supervised traffic jam assist. This style of product (as well as supervised highway cruising) is the first thing that car companies are delivering (though they are also delivering various parking assist and valet parking systems.)

This makes sense as it’s an easy problem to solve. So easy, in fact, that many of them now admit they are working on making a real traffic jam assist, which will drive the jam for you while you do e-mail or read a book. This is a readily solvable problem today — you really just have to follow the other cars, and you are going slow enough that short of a catastrophic error like going full throttle, you aren’t going to hurt people no matter what you do, at least on a highway where there are no pedestrians or cyclists. As such, a full auto traffic jam assist should be the first product we see form car companies.

None of them will say when they might do this. The barrier is not so much technological as corporate — concern about liability and image. It’s a shame, because frankly the supervised cruise and traffic jam assist products are just in the “pleasant extra feature” category. They may help you relax a bit (if you trust them) as cruise control does, but they give you little else. A “read a book” level system would give people back time, and signal the true dawn of robocars. It would probably sell for lots more money, too.

The most impressive car is Delphi’s, a collaboration with folks out of CMU. The Delphi car, a modified Audi SUV, has no fewer than 6 4-plane LIDARs and an even larger number of radars. It helps if you make the radars, as otherwise this is an expensive bill of materials. With all the radars, the vehicle can look left and right, and back left and back right, as well as forward, which is what you need for dealing with intersections where cross traffic doesn’t stop, and for changing lanes at high speed.

As a refresher: Radar gives you great information, including speed on moving objects, and sucks on stationary ones. It goes very far and sees through all weather. It has terrible resolution. LIDAR has more resolution but does not see as far, and does not directly give you speed. Together they do great stuff.

For notes and photos, browse the gallery

CES Day 1 -- Mercedes concept

A reasonable volume of robocar related stuff here at CES. I just had a few hours today, and went to see the much touted Mercedes F015 “Luxury in Motion.” This is a concept and not a planned vehicle, but it draws together a variety of ideas — most of which we’ve seen before — with some new explorations.

The vehicle has a long wheelbase design to allow it to have a very large passenger compartment, which features just 4 bucket seats, the front two of which can rotate to create face to face seating. (In addition, they can rotate to make it easier to get into the car.) We’ve seen a number of face to face concepts and designs and I’ve been interested in the idea from the start, the idea of making car travel more social and better for both families and co-workers. As a plus, rear facing seats, though less comfortable for some fraction of the population, are going to be safer in a front end collision.

The vehicle features a bevy of giant touchscreens. We see a lot of this, but I actually will note that we don’t have this at our desks or in our homes. I suspect passengers in robocars will prefer the tablets they already have, though there is the issue that looking down at a tablet generates motion sickness sometimes.

The interior has an odd mix of carpet and hardwood, perhaps trying to be more like a living room.

More interesting, though not on display, are the vehicle’s systems for communicating with pedestrians and other road users. These include LEDs that can indicate if the car is self-driving (boring, and something I pushed to have removed from the Nevada law,) but more interesting are indicators that help to tell pedestrians the vehicle has seen them. One feature, which only is likely to work at night, laser projects a crosswalk in front of the vehicle when it stops, to tell a pedestrian it sees them and is expecting them to cross in front. It can also make LED words at the back for other cars (something that is I think illegal in some jurisdictions.

Also interesting has been the press reaction. Wired thinks it’s bonkers and not designed very well. The bonkers part is because the writer thinks it de-emphasizes driving too much. Of course, those of that stripe are quite upset at Google’s car with no controls. Other writers have liked the design, and find it quite superior to Google’s non-threatening design, suggesting the Google design is for regulators and the Mercedes design is for customers. Google plans to get approval for their car and operate it, while Mercedes is just using the F015 as a concept.

I have a gallery of several pictures of the car which I will add to during the week. In the gallery you will also see:

Audio Piloted Driving prototype

Audi drove one of their cars from the Bay Area to CES, letting press take 100 mile stints. It also helped them learn things about different conditions. One prototype is in the booth, I will go out to see the real car outdoors tomorrow.


TRW was showing off their technology with a transparent model showing where they had put an array of radars to make 360 degree radar and camera coverage. No LIDAR, but they will probably get one eventually. Radar’s resolution is low, but they believe that by fusing the radar and the camera views they can get very good perception of the road.


There are more for me to see tomorrow. Ford showed more of their ADAS systems and also their Focus which has 4 of the 32 plane velodyne LIDARs on it. Toyota showed only a hydrogen fuel cell car. Valeo has some interesting demos I will want to see — they have promised doing a good traffic jam assist. While they have not said so, I think the most interesting car company robocar function will be a traffic jam assist which does not require supervision — ie. you can read. While no car company is ready to have the driver out of the loop at high speeds, doing it at traffic jam speeds is much easier, because mainly you just have to follow the other cars, and you stop self-driving if the jam opens up. Several companies are working on a product like this and I suspect it will be the first real robocar product to reach the market that is actually practical. The “super cruise” products which drive while you watch are pleasant, but not much more world-changing than adaptive cruise control. When the car can give people time back, even if it’s only the traffic jam time, then something interesting starts happening.

Fixing the sad state of in-flight entertainment (your own or the airline's)

When Southwest started using tablets for in-flight entertainment, I lauded it. Everybody has been baffled by just how incredibly poor most in-flight video systems are. They tend to be very slow, with poor interfaces and low resolution screens. Even today it’s common to face a small widescreen that takes a widescreen film, letterboxes it and then pillarboxes it, with only an option to stretch it and make it look wrong. All this driven by a very large box in somebody’s footwell.

I found out one reason why these systems are so outdated. Apparently, all seatback screens have to be safety tested, to make sure that if you are launched forward and hit your head on the screen, it is not more dangerous than it needs to be. Such testing takes time and money, so these systems are only updated every 10 years. The process of redesigning, testing and installing takes long enough that it’s pretty sure the IFE system will seem like a dinosaur compared to your phone or tablet.

One airline is planning to just safety test a plastic case for the seatback into which they can insert different panels as they develop. Other airlines are moving to tablets, or providing you movies on your own tablet, though primarily they have fallen into the Apple walled garden and are doing it only for the iPad.

The natural desire is just to forget the airline system and bring your own choice of entertainment on your own tablet. This is magnified by the hugely annoying system which freezes the IFE system on every announcement. Not just the safety announcements. Not just the announcements in your language, but also the announcement that duty free shopping has begun in English, French and Chinese. While a few airlines let you start your movie right after boarding, you don’t want to do it, as you will get so many interruptions until the flight levels off that it will drive you crazy. The airline provided tablet services also do this interruption, so your own tablet is better.

In the further interests of safety, new rules insist you can only use the airline’s earbud headphones during takeoff and landing, not your nice noise cancellation phones. But you didn’t pick up earbuds since you have the nicer ones. The theory is, your nice headphones might make you miss a safety announcement when landing, even though they tend to block background noise and actually make speech clearer.

One of the better IFE systems is the one on Emirates. This one, I am told, knows who you are, and if you pause a show on one flight, it picks up there on your next flight. (Compare that to so many systems that often forget where you were in the film on the same flight, and also don’t warn you if you won’t be able to finish the movie before the system is turned off.)

Using your own tablet

It turns out to be no picnic using your own tablet.

  • You have to remember to pre-load the video, of course
  • You have to pay for it, which is annoying if:
    • The airline is already paying for it and providing it free in the IFE
    • You have it on netflix/etc. and could watch it at home at no cost
    • You wish to start a movie one day and finish it on another flight, but don’t want to pay to “own” the movie. (Because of this I mostly watch TV shows, which only have a $3 “own” price and no rental price.)

How to fix this:

  1. IFE systems should know who I am, know my language, know if I have already seen the safety briefing, and not interrupt me for anything but new or plane-specific safety announcements in my chosen language.
  2. Like the Emirates systems, they should know where I am in each movie, as well as my tastes.
  3. How to know the language of the announcement? Well, you could have a button for the FA to push, but today software is able to figure out the language pretty reliably, so an automated system could learn the languages and the order in which they are done on that flight. Software could also spot phrases like “Safety announcement” at the start of a public address, or there could be a button.
  4. Netflix should, like many other services, allow you to cache material for offline viewing. The material can have an expiration date, and the software can check when it’s online to update those dates, if you are really paranoid about people using the cache as a way to watch stuff after it leaves Netflix. Reportedly Amazon does this on the Kindle Fire.
  5. Online video stores (iTunes, Google Play, etc.) should offer a “plane rental” which allows you to finish a movie after the day you start it. In fact, why not have that ability for a week or two on all rentals? It would not let you restart, only let you watch material you have not yet viewed, plus perhaps a minute ahead of that.
  6. Perhaps I am greedy, but it would be nice if you could do a rental that lets 2 or more people in a household watch independently, so I watch it on my flight and she watches it on hers.
  7. If necessary, noise-cancelling headphones should have a “landing mode” that mixes in more outside sound, and a little airplane icon on them, so that we can keep them on during takeoff and landing. Or get rid of this pretty silly rule.

Choosing your film

There’s a lot of variance in the quality of in-flight films. Air Canada seems particularly good at choosing turkeys. Before they close the doors, I look up movies — if I can get the IFE system to work with all the announcements — in review sites to figure out what to watch. In November, at Dublin Web Summit, I met the developers of a travel app called Quicket, which specialized in having its resources offline. I suggested they include ratings for the movies on each flight — the airlines publish their catalog in advance — in the offline data, and in December they had implemented it. Great job, Quicket.

Let me be a bit late for the plane, occasionally.

One of air travel’s great curses is that you have to leave for the airport a long time before your flight. Airlines routinely “recommend” you be there 2 or 3 hours ahead, and airport ride companies often take it to heart and want to pick you up many hours before even short flights. The curse is strongest on short flights, where you can easily spend as much as twice the time getting to the flight as you spend in the air.

The reality, though, is that it’s not nearly that strict. I often arrive much later. I’ve missed 3 flights in my life — in two cases because cheap airlines literally had nobody at the counter past their cutoff deadline, and once because United’s automated bag check line was very long (I got there before the deadline) but their computer is fully strict on the deadline while humans usually are not. In all cases, I got on another flight, and the time lost to these missed flights is vastly less than the time gained by not being at the airport so early.

But it’s getting harder. Airlines are getting stricter, and in a few cases offering no flexibility.

The big curse is that many of the delays can’t be predicted. It may almost always take 20 minutes to get to the airport, but every so often traffic will make it 40. Security is usually only 5-10 minutes but there are times when it’s 30. Car rental return, parking shuttles, called taxis and Ubers can have unexpected delays. Parking lots can be full (as happened to me this xmas after Uber failed me.) Immigration can range from 2 minutes to 1.5 hours if you have to go to secondary screening. While in theory you could research this, sometimes at strange airports you are surprised to find it’s 30 minutes walk and people-mover to your gate.

If you ever fly privately, though, you will discover a different world, where even if you’re just a guest you can arrive a very short time before your flight. (If you’re the owner, of course, it doesn’t take off until you get there.) But there are many options that can speed your trip through the airport without needing to fly a private jet:

  • Tools like Google Now track traffic and warn you when you need to leave earlier to get to the airport
  • If you take a cab to the airport, you eliminate the delays of parking and car return
  • Though rarer today, ability to check bags in advance at remote locations helps a lot
  • Curb checking of bags is great, as of course is online check-in sent to your phone
  • (Not checking bags is of course better, and any savvy flyer avoids it whenever they can, but sometimes you can’t.)
  • Premium passengers get check-in gates with minimal lines, and premium security lines
  • If you have a Global Entry or Nexus card, you can skip the immigration/customs line
  • TSA PRE, “Clear” and premium passenger security lines provide a no-wait experience. Of course nobody should ever have to wait, ever.
  • Failing that, offering appointments at security for a predictable security trip can remove the time risk
  • Sometimes they also let people who are at risk of missing a flight skip past the security line (and some other lines)
  • In some cases, premium passengers are shuttled in vehicles within the terminal or on the tarmac
  • Business class passengers can board as late as they want (or as early) and still get a place in the bins on most flights

In addition, I believe that if you wanted to get your checked bag cleared quickly by the TSA for money, it could happen. Of course, we can’t have everybody do this all the time, or so I presume, because it would require too much in the way of resources. But what if we allow you to do this occasionally when factors beyond your control have made you late.

What is proposed is that every so often — perhaps one time in twenty — when factors like traffic, long security lines or other things mostly beyond your control made you late, you could invoke an urgent need, and still make your flight.

This would allow you to budget a more reasonable time to arrive

What does this all add up to? It should be possible, at an extra cost, to get a quick trip through the airport. Say that cost is $200 (I don’t think it’s that much, but say that it is.) You could pay $10 extra per flight for “insurance” and be able to invoke an urgent trip every so often when things go wrong. It’s worth it to pay every trip because it gives you a benefit on every trip — you leave later, knowing you will make it even if traffic, security lines or similar factors would delay you too much.

Some of the services you might get would include:

  • Somebody meets your car at the curb, takes your keys, and then parks it or returns it to the car rental facility
  • Another employee meets you and checks in your bags at the curb. Your bags are put in a special urgent queue in TSA inspection. If need be a staffer walks it through.
  • A golf cart takes you to security if it’s not close, and you get to the front of the line.
  • If your gate is far, another golf cart or escort takes you there

The natural question is, “why wouldn’t you want this all the time?” And indeed you would, and a large fraction of passengers would pay a fairly high fee to get this when they need it. Airlines might make it just part of the service with high-priced tickets or super-elite flyers, and I see no reason that should not happen. The price can be set so that the demand matches the supply, based on the cost of having extra employees to handle urgent passengers.

When it comes to more “public” resources like TSA screening, they have a simple rule. You can give premium services to premium passengers if what you do also speeds up the line for ordinary passengers. A simple implementation of this is to just pay for an extra screening station for the premium passengers, because now you don’t butt in line and in fact by not being in the regular line at all, you speed it up for all in it. You don’t need to be so extravagant, however. For example, the “TSE PRE” line, which allows a faster trip through the X-ray (you don’t have to take anything out, or remove your shoes in this line) speeds up everybody because we all wait behind people doing that. If you can show that the amount you speed up the whole process is greater than the delay you add by letting premium passengers jump the queue, it is allowed.

But as fancy as these services sound, with extra staff, they are really not that expensive. Perhaps just 20 minutes of employee time for most of it — more if they are driving your car to a parking lot for you. (Note that this curb hand-off is forbidden by most airports because car rental companies already would like to offer it to their top customers but it is believed that would be too popular and increase traffic. Special permission would need to be arranged.)

For the “insurance” approach, a few techniques could assure it was not being abused. The frequency of use is one of them, of course, but you could also give people an app for their phones. This app, using GPS and knowing a flight is coming, would know when you left for the airport. In fact, it could give you alerts as to when to leave based on information about traffic, parking and security wait times. If you left at the reasonable departure deadline, you would get the urgent service if traffic or other surprise factors made you late. If you left after that deadline, you would not be assured the fast track path.

What would be better would be an app that actually works with all the airport functions you will interact with — check in, the gate, bag check, passenger screening, parking lots, rental cars, traffic etc. Their databases could know their state, any special conditions, and both recommend a time to leave that will work, but even make appointments for you and tell you when to leave for them. Then your phone could guide you through the airport and do all the hard work. It would provide an ID to get you your appointment at security. It might tell you to not drive your own car and take a car service instead if that’s easier than parking your car for you. It would coordinate for all the passengers using the system to make sure they flow through the airport in a well regulated manner, with no surprises, so that people don’t have to try to get there hours in advance.