Technology

Rise of the selfie drones. Is tethered a good idea?

At CES, there were a couple of “selfie drones.” The Nixie is designed to be worn on your wrist, taken off, thrown, and then it returns to you after taking a photo or video. There was also the Zano which is fancier and claims it will follow you around, tracking you as you mountain bike or ski to make a video of you just as you do your cool trick.

The selfie is everywhere. In Rome, literally hundreds of vendors tried to sell me selfie sticks in all the major tourist areas, even with a fat Canon DSLR hanging from my neck. It’s become the most common street vendor gadget. (The blue LED wind up helicopters were driving me nuts anyway.)

I also had been thinking about this, and came up with a design that’s not as capable as these designs, but might be better. My selfie drone would be tethered. You would put down the base which would have the batteries and a retractable cord. Up would fly the camera drone, which would track your phone to get a great shot of you. (If it were for me, it would also offer panorama mode where it spun around at the top shooting a pano, with you or without you.)

This drone could not follow you as you do a sport, of course, or get above a certain height. But unlike the free designs, it would not get lost over the cliff in the winds, as I think might happen to a number of these free selfie drones. It turns out that cliffs and outlook points are a common place to want to take these photos, they are the place you really need a high view to capture you and what’s below you.

Secondly, with the battery on the ground, and only a short tether wire needed, you can have a much better camera as payload. Only needing a short flight time and not needing to carry the batteries means more capabilities for the drone.

It’s also less dangerous, and is unlikely to come under regulation because it physically can’t fly beyond a certain altitude or distance from the base. It could not shoot you from water or from over the edge of the cliff as the other drones could if you were willing to risk them.

My variation would probably be a niche. Most selfies are there to show off where you were, not to be top quality photos. Only more serious photographers would want one capable of hauling up a quality lens. Because mine probably wants a motor in the base to reel it back in (so you don’t have to wind the cables) it might even cost more, not less.

The pano mode would be very useful. In so many pano spots, the view is fantastic but is blocked by bushes and trees, and the spectacular pano shot is only available if you go up enough. For daytime a tethered drone would probably do fine. I’m still waiting on the Panono — a ball, studded with cameras from Berlin that was funded by Kickstarter. You throw the ball up, and it figures when it is at the top of its flight and shoots the panorama all at once. Something like that could also be carried by a tethered drone, and it has the advantage of not moving between shots as a spinning drone would be at risk for. This is another thing I’ve wanted for a while. After my first experiments in airplane and helicopter based panoramas showed you really want to shoot everything all at once, I imagined having decent digital cameras getting cheap enough to buy 16 of them and put them in a circle. Sadly, once cameras starting doing that, there were always better cameras that I now decided I needed that were too expensive to buy for that purpose.

The world needs standardized LEDs which adjust brightness

I’m sure, like me, you have lots of electronic gadgets that have status LEDs on them. Some of these just show the thing is on, some blink when it’s doing things. Of late, as blue LEDs have gotten cheap, it has been very common to put disturbingly bright blue LEDs on items.

These become much too bright at night, and can be a serious problem if the device needs to be in a bedroom or hotel room. Which things like laptops, phone and camera chargers and many other devices need to do. I end up putting small pieces of electrical tape over these blue LEDs.

I call upon the factories of Shenzen and elsewhere to produce low cost, standardized status LEDs. These LEDs will come with an included photosensor that measures the light in the room, and adjusts the LED so that it is just visible at that lighting level. Or possibly turns it off in the dark, because do we really need to know that our charger is on after we’ve turned off the lights?

Of course, one challenge is that the light from the LED gets into the photosensor. For most LEDs, the answer is pretty easy — put a filter that blocks out the colour of the LED over the photosensor. If you truly need a white LED, you could make a fancy circuit that turns it off for a few milliseconds every so often (the eye won’t notice that) and measures the ambient light while it’s off. All of this is very simple, and adds minimally to the cost. (In fact, the way you adjust the brightness of an LED is typically to turn it on and off very fast.)

Get these made and make it standard that all our gear uses them for status LEDs. Frankly, I think it would be a good idea even for consumer goods that don’t get into our bedrooms. My TV rooms and computer rooms don’t need to look like Christmas scenes.

Day 3 of CES -- BMW and robots

Day 3 at CES started with a visit to BMW’s demo. They were mostly test driving new cars like the i3 and M series cars, but for a demo, they made the i3 deliver itself along a planned corridor. It was a mostly stock i3 electric car with ultrasonic sensors — and the traffic jam assist disabled. When one test driver dropped off the car, they scanned it, and then a BMW staffer at the other end of a walled course used a watch interface to summon that car. It drove empty along the line waiting for test drives, and then a staffer got in to finish the drive to the parking spot where the test driver would actually get in, unfortunately.

Also on display were BMW’s collision avoidance systems in a much more equipped research car with LIDARs, Radar etc. This car has some nice collision avoidance. It has obstacle detection — the demo was to deliberately drive into an obstacle, but the vehicle hits the brakes for you. More gently than the Volvo I did this in a couple of years ago.

More novel is detection of objects you might hit from the side or back in low speed operations. If it looks like you might sideswipe or back into a parking column or another car, the vehicle hits the brakes on you (harder) to stop it from happening.

Insurers will like this — low speed collisions in parking lots are getting to be a much larger fraction of insurance claims. The high speed crashes get all the attention, but a lot of the payout is in low speed.

I concluded with a visit to my favourite section of CES — Eureka Park, where companies get small lower cost booths, with a focus on new technology. Also in the Sands were robotics, 3D printing, health, wearables and more — never enough time to see it all.

I have added 12 more photos to my gallery, with captions — check the last part out for notes on cool products I saw, from self-tightening belts and regenerating roller skates to phone-charging camping pots.

CES Day 2 Gallery and notes

After a short Day 1 at CES a more full day was full of the usual equipment — cameras, TVs, audio and the like and visits to several car booths.

I’ve expanded my gallery of notable things with captions with cars and other technology.

Lots of people were making demonstrations of traffic jam assist — simple self-driving at low speeds among other cars. All the demos were of a supervised traffic jam assist. This style of product (as well as supervised highway cruising) is the first thing that car companies are delivering (though they are also delivering various parking assist and valet parking systems.)

This makes sense as it’s an easy problem to solve. So easy, in fact, that many of them now admit they are working on making a real traffic jam assist, which will drive the jam for you while you do e-mail or read a book. This is a readily solvable problem today — you really just have to follow the other cars, and you are going slow enough that short of a catastrophic error like going full throttle, you aren’t going to hurt people no matter what you do, at least on a highway where there are no pedestrians or cyclists. As such, a full auto traffic jam assist should be the first product we see form car companies.

None of them will say when they might do this. The barrier is not so much technological as corporate — concern about liability and image. It’s a shame, because frankly the supervised cruise and traffic jam assist products are just in the “pleasant extra feature” category. They may help you relax a bit (if you trust them) as cruise control does, but they give you little else. A “read a book” level system would give people back time, and signal the true dawn of robocars. It would probably sell for lots more money, too.

The most impressive car is Delphi’s, a collaboration with folks out of CMU. The Delphi car, a modified Audi SUV, has no fewer than 6 4-plane LIDARs and an even larger number of radars. It helps if you make the radars, as otherwise this is an expensive bill of materials. With all the radars, the vehicle can look left and right, and back left and back right, as well as forward, which is what you need for dealing with intersections where cross traffic doesn’t stop, and for changing lanes at high speed.

As a refresher: Radar gives you great information, including speed on moving objects, and sucks on stationary ones. It goes very far and sees through all weather. It has terrible resolution. LIDAR has more resolution but does not see as far, and does not directly give you speed. Together they do great stuff.

For notes and photos, browse the gallery

Near-perfect virtual reality of recent times and tourism

Recently I tried Facebook/Oculus Rift Crescent Bay prototype. It has more resolution (I will guess 1280 x 1600 per eye or similar) and runs at 90 frames/second. It also has better head tracking, so you can walk around a small space with some realism — but only a very small space. Still, it was much more impressive than the DK2 and a sign of where things are going. I could still see a faint screen door, they were annoyed that I could see it.

We still have a lot of resolution gain left to go. The human eye sees about a minute of arc, which means about 5,000 pixels for a 90 degree field of view. Since we have some ability for sub-pixel resolution, it might be suggested that 10,000 pixels of width is needed to reproduce the world. But that’s not that many Moore’s law generations from where we are today. The graphics rendering problem is harder, though with high frame rates, if you can track the eyes, you need only render full resolution where the fovea of the eye is. This actually gives a boost to onto-the-eye systems like a contact lens projector or the rumoured Magic Leap technology which may project with lasers onto the retina, as they need actually render far fewer pixels. (Get really clever, and realize the optic nerve only has about 600,000 neurons, and in theory you can get full real-world resolution with half a megapixel if you do it right.)

Walking around Rome, I realized something else — we are now digitizing our world, at least the popular outdoor spaces, at a very high resolution. That’s because millions of tourists are taking billions of pictures every day of everything from every angle, in every lighting. Software of the future will be able to produce very accurate 3D representations of all these spaces, both with real data and reasonably interpolated data. They will use our photographs today and the better photographs tomorrow to produce a highly accurate version of our world today.

This means that anybody in the future will be able to take a highly realistic walk around the early 21st century version of almost everything. Even many interiors will be captured in smaller numbers of photos. Only things that are normally covered or hidden will not be recorded, but in most cases it should be possible to figure out what was there. This will be trivial for fairly permanent things, like the ruins in Rome, but even possible for things that changed from day to day in our highly photographed world. A bit of AI will be able to turn the people in photos into 3-D animated models that can move within these VRs.

It will also be possible to extend this VR back into the past. The 20th century, before the advent of the digital camera, was not nearly so photographed, but it was still photographed quite a lot. For persistent things, the combination of modern (and future) recordings with older, less frequent and lower resolution recordings should still allow the creation of a fairly accurate model. The further back in time we go, the more interpolation and eventually artistic interpretation you will need, but very realistic seeming experiences will be possible. Even some of the 19th century should be doable, at least in some areas.

This is a good thing, because as I have written, the world’s tourist destinations are unable to bear the brunt of the rising middle class. As the Chinese, Indians and other nations get richer and begin to tour the world, their greater numbers will overcrowd those destinations even more than the waves of Americans, Germans and Japanese that already mobbed them in the 20th century. Indeed, with walking chairs (successors of the BigDog Robot) every spot will be accessible to everybody of any level of physical ability.

VR offers one answer to this. In VR, people will visit such places and get the views and the sounds — and perhaps even the smells. They will get a view captured at the perfect time in the perfect light, perhaps while the location is closed for digitization and thus empty of crowds. It might be, in many ways, a superior experience. That experience might satisfy people, though some might find themselves more driven to visit the real thing.

In the future, everybody will have had a chance to visit all the world’s great sites in VR while they are young. In fact, doing so might take no more than a few weekends, changing the nature of tourism greatly. This doesn’t alter the demand for the other half of tourism — true experience of the culture, eating the food, interacting with the locals and making friends. But so much commercial tourism — people being herded in tour groups to major sites and museums, then eating at tour-group restaurants — can be replaced.

I expect VR to reproduce the sights and sounds and a few other things. Special rooms could also reproduce winds and even some movement (for example, the feeling of being on a ship.) Right now, walking is harder to reproduce. With the OR Crescent Bay you could only walk 2-3 feet, but one could imagine warehouse size spaces or even outdoor stadia where large amounts of real walking might be possible if the simulated surface is also flat. Simulating walking over rough surfaces and stairs offers real challenges. I have tried systems where you walk inside a sphere but they don’t yet quite do it for me. I’ve also seen a system where you are held in place and move your feet in slippery socks on a smooth surface. Fun, but not quite there. Your body knows when it is staying in one place, at least for now. Touching other things in a realistic way would require a very involved robotic system — not impossible, but quite difficult.

Also interesting will be immersive augmented reality. There are a few ways I know of that people are developing

  • With a VR headset, bring in the real world with cameras, modify it and present that view to the screens, so they are seeing the world through the headset. This provides a complete image, but the real world is reduced significantly in quality, at least for now, and latency must be extremely low.
  • With a semi-transparent screen, show the augmentation with the real world behind it. This is very difficult outdoors, and you can’t really stop bright items from the background mixing with your augmentation. Focus depth is an issue here (and is with most other systems.) In some plans, the screens have LCDs that can go opaque to block the background where an augmentation is being placed.
  • CastAR has you place retroreflective cloth in your environment, and it can present objects on that cloth. They do not blend with the existing reality, but replace it where the cloth is.
  • Projecting into the eye with lasers from glasses, or on a contact lens can be brighter than the outside world, but again you can’t really paint over the bright objects in your environment.

Getting back to Rome, my goal would be to create an augmented reality that let you walk around ancient Rome, seeing the buildings as they were. The people around you would be converted to Romans, and the modern roads and buildings would be turned into areas you can’t enter (since we don’t want to see the cars, and turning them into fast chariots would look silly.) There have been attempts to create a virtual walk through ancient Rome, but being able to do it in the real location would be very cool.

The paradox of Bitcoin proof-of-work mining

Everybody knows about bitcoin, but fewer know what goes on under the hood. Bitcoin provides the world a trustable ledger for transactions without trusting any given party such as a bank or government. Everybody can agree with what’s in the ledger and what order it was put there, and that makes it possible to write transfers of title to property — in particular the virtual property called bitcoins — into the ledger and thus have a money system.

Satoshi’s great invention was a way to build this trust in a decentralized way. Because there are rewards, many people would like to be the next person to write a block of transactions to the ledger. The Bitcoin system assures that the next person to do it is chosen at random. Because the winner is chosen at random from a large pool, it becomes very difficult to corrupt the ledger. You would need 6 people, chosen at random from a large group, to all be part of your conspiracy. That’s next to impossible unless your conspiracy is so large that half the participants are in it.

How do you win this lottery to be the next randomly chosen ledger author? You need to burn computer time working on a math problem. The more computer time you burn, the more likely it is you will hit the answer. The first person to hit the answer is the next winner. This is known as “proof of work.” Technically, it isn’t proof of work, because you can, in theory, hit the answer on your first attempt, and be the winner with no work at all, but in practice, and in aggregate, this won’t happen. In effect, it’s “proof of luck,” but the more computing you throw at the problem, the more chances of winning you have. Luck is, after all, an imaginary construct.

Because those who win are rewarded with freshly minted “mined” bitcoins and transaction fees, people are ready to burn expensive computer time to make it happen. And in turn, they assure the randomness and thus keep the system going and make it trustable.

Very smart, but also very wasteful. All this computer time is burned to no other purpose. It does no useful work — and there is debate about whether it inherently can’t do useful work — and so a lot of money is spent on these lottery tickets. At first, existing computers were used, and the main cost was electricity. Over time, special purpose computers (dedicated processors or ASICs) became the only effective tools for the mining problem, and now the cost of these special processors is the main cost, and electricity the secondary one.

Money doesn’t grow on trees or in ASIC farms. The cost of mining is carried by the system. Miners get coins and will eventually sell them, wanting fiat dollars or goods and affecting the price. Markets, being what they are, over time bring closer and closer the cost of being a bitcoin miner and the reward. If the reward gets too much above the cost, people will invest in mining equipment until it normalizes. The miners get real, but not extravagant profits. (Early miners got extravagant profits not because of mining but because of the appreciation of their coins.)

What this means is that the cost of operating Bitcoin is mostly going to the companies selling ASICs, and to a lesser extent the power companies. Bitcoin has made a funnel of money — about $2M a day — that mostly goes to people making chips that do absolutely nothing and fuel is burned to calculate nothing. Yes, the miners are providing the backbone of Bitcoin, which I am not calling nothing, but they could do this with any fair, non-centralized lottery whether it burned CPU or not. If we can think of one.

(I will note that some point out that the existing fiat money system also comes with a high cost, in printing and minting and management. However, this is not a makework cost, and even if Bitcoin is already more efficient doesn’t mean there should not be effort to make it even better.)

CPU/GPU mining

Naturally, many people have been bothered by this for various reasons. A large fraction of the “alt” coins differ from Bitcoin primarily in the mining system. The first round of coins, such as Litecoin and Dogecoin, use a proof-of-work system which was much more difficult to solve with an ASIC. The theory was that this would make mining more democratic — people could do it with their own computers, buying off-the-shelf equipment. This has run into several major problems:

  • Even if you did it with your own computer, you tended to need to dedicate that computer to mining in the end if you wanted to compete
  • Because people already owned hardware, electricity became a much bigger cost component, and that waste of energy is even more troublesome than ASIC buying
  • Over time, mining for these coins moved to high-end GPU cards. This, in turn caused mining to be the main driver of demand for these GPUs, drying up the supply and jacking up the prices. In effect, the high end GPU cards became like the ASICs — specialized hardware being bought just for mining.
  • In 2014, vendors began advertising ASICs for these “ASIC proof” algorithms.
  • When mining can be done on ordinary computers, it creates a strong incentive for thieves to steal computer time from insecure computers (ie. all computers) in order to mine. Several instances of this have already become famous.

The last point is challenging. It’s almost impossible to fix. If mining can be done on ordinary computers, then they will get botted. In this case a thief will even mine at a rate that can’t pay for the electricity, because the thief is stealing your electricity too.  read more »

The failure of the pan-tilt camera in video calls

This year, we stayed with Kathryn’s family for the holidays, so I attended dinner in my own mother’s home via Skype. Once again, the technology was frustrating. And it need not be.

There were many things that can be better. For those of us who Skype regularly, we don’t understand that there is still hassle for those not used to it. Setting up a good videoconferencing setup is still work. As I have found is always the case in a group-to-solos videoconference, the group folks do not care nearly as much about the conference as the remote solos, so a fundamental rule of design here is that if the remotes can do something, they should be the ones doing it, since they care the most. If there is to be UI, leave the UI to the remotes (who are sitting at computers and care) and not to the meeting room locals. Many systems get this exactly backwards — they imagine the meeting room is the “master” and thus has the complex UI.

In this family setting, however, the clearest problem for me is that no camera can show the whole room. It’s like sitting at the table unable to move your head, with blinders on. You can’t really be part of the group. You also have to be away from the table so everybody there can see you, since screens are only visible over a limited viewing angle.

One clear answer to this is the pan/tilt camera, which is to say a webcam with servo motors that allow it to look around. This technology is very cheap — you’ll find pan/tilt IP security cameras online for $30 or less, and there are even some low priced Chinese made pan/tilt webcams out there — I just picked another up for $20. I also have the Logitech Orbit AF. This was once a top of the line HD webcam, and still is very good, but Logitech no longer makes it. Logitech also makes the BCC950 — a $200 conference room pan/tilt webcam which has extremely good HD quality and a built-in hardware compressor for 1080p video that is superb with Skype. We have one of these, and it advertises “remote control” but in fact all that means is there is an infrared remote the people in the room can use to steer the camera. In our meetings, nobody ever uses this remote for the reason I specify above — the people in the room aren’t the motivated ones.

This is compounded by the fact that the old method — audio conference speakerphones — have a reasonably well understood UI. Dial the conference bridge, enter a code, and let the remotes handle their own calling in. Anything more complex than that gets pushback — no matter how much better it is.  read more »

The RV of the future

Over the years, particularly after Burning Man, I’ve written posts about how RVs can be improved. This year I did not use an regular RV but rather a pop-up camping trailer. However, I thought it was a good time to summarize a variety of the features I think should be in every RV of the future.

Smart Power

We keep talking about smart power and smart grids but power is expensive and complex when camping, and RVs are a great place for new technologies to develop.

To begin with, an RV power system should integrate the deep cycle house batteries, a special generator/inverter system, smart appliances and even the main truck engine where possible.

Today the best small generators are inverter based. Rather than generating AC directly from an 1800rpm motor and alternator, they have a variable speed engine and produce the AC via an inverter. These are smaller, more efficient, lighter and quieter than older generators, and produce cleaner power. Today they are more expensive, but not more expensive than most RV generators. RV generators are usually sized at 3,600 to 4,000 watts in ordinary RVs — that size dictated by the spike of starting up the air conditioner compressor when something else, like the microwave is running.

An inverter based generator combined with the RV’s battery bank doesn’t have to be that large. It can draw power for the surge of starting a motor from the battery. The ability to sustain 2,000 watts is probably enough, with a few other tricks. Indeed, it can provide a lot of power even with the generator off, though the generator should auto-start if the AC is to be used, or the microwave will be used for a long time.

By adding a data network, one can be much more efficient with power. For example, the microwave could just turn off briefly when the thermostat wants to start the AC’s compressor, or even the fans. The microwave could also know if it’s been told to cook for 30 seconds (no need to run generator) or 10 minutes (might want to start it.) It could also start the generator in advance of cooling need.

If the master computer has access to weather data, it could even decide what future power needs for heating fans and air conditioning will be, and run the generator appropriately. With a GPS database, it could even know the quiet times of the campsite it’s in and respect them.

A modern RV should have all-LED lighting. Power use is so low on those that the lights become a blip in power planning. Only the microwave, AC and furnace fan would make a difference. Likewise today’s TVs, laptops and media players which all draw very few watts.

A smart power system could even help plugging into shore power, particularly a standard 15a circuit. Such circuits are not enough to start many ACs, or to run the AC with anything else. With surge backup from the battery, an RV could plug into an ordinary plug and act almost like it had a high power connection.

To go further, for group camping, RVs should have the ability to form an ad-hoc power grid. This same ability is already desired in the off-grid world, so it need not be developed just for RVs. RVs able to take all sorts of input power could also eventually get smart power from RV campsites. After negotiation, a campsite might offer 500v DC at 12 amps instead of 115v AC, allowing the largest dual-AC RVs to plug into small wires.  read more »

Augmented Reality as documentation and the "context" button

I’ve been a little skeptical of many augmented reality apps I’ve seen, feeling they were mostly gimmick and not actually useful.

I’m impressed by this new one from Audi where you point your phone (iPhone only, unfortunately) at a feature on your car, and you get documentation on it. An interesting answer to car user manuals that are as thick as the glove compartment and the complex UIs they describe.

Like so many apps, however, this one will suffer the general problem of the amount of time it takes to fumble for your phone, unlock it, invoke an app, and then let the app do its magic. Of course fumbling for the manual and looking up a button in the index takes time too.

I’ve advocated for a while that phones become more aware of their location, not just in the GPS sense, but in the sense of “I’m in my car” and know what apps to make very easy to access, and even streamline their use. This can include allowing these apps to be right on the lock screen — there’s no reason to need to unlock the phone to use an app like this one. In fact, all the apps you use frequently in your car that don’t reveal personal info should be on the lock screen when you get near the car, and some others just behind it. The device can know it is in the car via the bluetooth in the car. (That bluetooth can even tell you if you’re in another car of a different make, if you have a database mapping MAC addresses to car models.)

Bluetooth transmitters are so cheap and with BT Low Energy they can last a year on a watch battery, so one of the more compelling “Internet of Things” applications — that’s also often a gimmick term — is to scatter these devices around the world to give our phones this accurate sense of place.

Some of this philosophy is expressed in Google Now, a product that goes the right way on many of these issues. Indeed, the Google Now cards are one of the more useful aspects of Glass, which otherwise is inherently limited in its user interface making it harder for you to ask Glass things than it is to ask a phone or desktop.

The car app has some wrinkles of course. Since you don’t always have an iPhone (or may not have your phone even if you own an iPhone) you still need the thick manual, though perhaps it can be in the trunk. And I will wager that some situations, like odd lighting, may make it not as fast as in the video.

By and large, pointing your phone at QR codes to learn more has not caught on super well, in part again because it takes time to get most phones to the point where they are scanning the code. Gesture interfaces can help there but you can only remember and parse a limited number of gestures, so many applications call out for being the special one. Still a special shake which means “Look around you in all ways you can to figure out if there is something in this location, time or camera view that I might want you to process.” Constant looking eats batteries which is why you need such a shake.

I’ve proposed that even though phones have slowly been losing all their physical buttons, I would put this back as a physical button I call the “context” button. “Figure out the local context, and offer me the things that might be particularly important in this context.” This would offer many things:

  • Standing in front of a restaurant or shop, the reviews, web site or app of the shop
  • In the car, all the things you like in the car, such as maps/nav, the manual etc.
  • In front of a meeting room, the schedule for that room and ability to book it
  • At a tourist attraction, info on it.
  • In a hotel, either the ability to book a room, or if you have a room, hotel services

There are many contexts, but you can usually sort them so that the most local and the most rare come first. So if you are in a big place you are frequently, such as the office complex you work at, the general functions for your company would not be high on the list unless you manually bumped them.

Of course, one goal is that car UIs will become simpler and self-documenting, as cars get screens. Buttons will still do the main functions you do all the time — and which people already understand — but screens will do the more obscure things you might need to look up in the manual, and document it as they go. You obviously can’t ever do something you need to look up in the manual while driving.

There is probably a trend that the devices in our lives with lots of buttons and complex controls and modes, like home electronics, cars and some appliances, will move to having screens in their UIs and thus not need the augmented reality.

RAID, backyard backup and the future of backup

Had my second RAID failure last week. In the end, things were OK but the reality is that many RAID implementations are much more fragile than they should be. Write failures on a drive caused the system to hang. Hard reset caused the RAID to be marked dirty, which mean it would not boot until falsely marked clean (and a few other hoops,) leaving it with some minor filesystem damage that was reparable. Still, I believe that a proper RAID-like system should have as its maxim that the user is never worse off because they built a RAID than if they had not done so. This is not true today, both due to fragility of systems, and the issues I have outlined before with deliberately replacing a disk in a RAID, where it does not make use of the still-good but aging old disk when rebuilding the replacement.

A few years ago I outlined a plan for disks to come as two-packs for easy, automatic RAID because disks are so cheap that everybody should be doing it. The two-pack would have two SATA ports on it, but if you only plugged in one, it would look like a single disk, and be a RAID-1 inside. If you gave it a special command, it could look like other things, including a RAID-0, or two drives, or a JBOD concatenation. If you plugged into the second port it would look like two disks, with the RAID done elsewhere.

I still want this, but RAID is not enough. It doesn’t save you from file deletion, or destruction of the entire system. The obvious future trend is network backup, which is both backup and offsite. The continuing issue with network backup is that some people (most notably photographers and videographers) generate huge amounts of data. I can come back from a weekend with 16gb of new photos, and that’s a long slog over DSL with limited upstream for network backup. To work well, network backup also needs to understand all databases, as a common database file might be gigabytes and change every time there is a minor update to a database record. (Some block-level incrementalism can work here if the database is not directly understood.)

Network backup is also something that should be automatic. There are already peer-to-peer network backups, that make use of the disks of friends or strangers (encrypted of course) but it would be nice if this could “just happen” when any freshly installed computer unless you turn it off. The user must keep the key stored somewhere safe, which is not zero-UI, though if all they want is to handle file-deletion and rollback they can get away without it.

Another option that might be interesting would be the outdoor NAS. Many people now like to use NAS boxes over gigabit networks. This is not as fast as SATA with a flash drive, or RAID, or even modern spinning disk, but it’s fast enough for many applications.

An interesting approach would be a NAS designed to be placed outdoors, away from the house, such as in the back corner of a yard, so that it would survive a fire or earthquake. The box would be waterproof and modestly fireproof, but ideally it is located somewhere a fire is unlikely to reach. It could either be powered by power-over-ethernet or could have its own power and even use WIFI (in which case it is only suitable for backup, not as a live NAS.)

This semi-offsite backup would be fast and cheap (network storage tends to be much more expensive than local drives.) It would be encrypted, of course, so that nobody can steal your data. Encryption would be done in the clients, not the NAS, so even somebody who taps the outside wire would get nothing.

This semi-offsite backup could be used in combination with network backup. Large files and new files would be immediately sent to the backyard backup. The most important files could then go to network backup, or all of them, just much more slowly.

A backyard backup could also be shared by neighbours, especially on wifi, which might make it quite cost effective. Due to encryption, nobody could access their neighbour’s data.

If neighbours are going to cooperate, this can also be built by just sharing servers or NAS boxes in 2 or more houses. This provides decent protection and avoids having to be outside, but there is the risk that some fires burn down multiple houses depending on the configuration.

A backyard backup would be so fast that many would reverse what I said above, and have no need for RAID. Files would be mirrored to the backyard backup within seconds or minutes. RAID would only be needed for those who need to have systems that won’t even burp in a disk failure (which is a rare need in the home) or which must not lose even a few minutes of data.

The laptop in the tablet world

I have owned a laptop for decades, and I’ve always gone for the “small and light” laptop class because as a desktop user, my laptop is only for travel, and ease of carrying is thus very important. Of course once I get there I have envied the larger screens and better keyboards and other features of the bigger laptops people carry, but generally been happy with the decision.

Others have gone for “desktop replacement” laptops which are powerful, big and heavy. Those folks don’t have a desktop, at most they plug their laptop into an external monitor and other peripherals at home. The laptop is a bitch to carry but of course all files come with it.

Today, the tablet is changing that equation. I now find that when I am going into a situation where I want a minimal device that’s easy to carry, the tablet is the answer, and even better the tablet and bluetooth keyboard. I even carry a keyboard that’s a fair bit larger than the tablet, but still very light compared to a laptop. When I am in a meeting, or sitting attending an event, I am not going to do the things I need the laptop for. Well, not as much, anyway. On the airplane, the tablet is usually quite satisfactory — in fact better when in coach, though technically the keyboard is not allowed on a plane. (My tablet can plug in a USB keyboard if needed.)

Planes are a particular problem. It’s not safe to check LCD screens in your luggage, so any laptop screen has to come aboard with you, and this is a pain if the computer is heavy.

With the tablet dealing with the “I want small and light” situations, what is the right laptop answer?

One obvious solution are the “convertible tablet” computers being offered by various vendors. These are laptops where the screen is a tablet and it can be removed. These tend to be Windows devices, and somewhat expensive, but the approximate direction is correct.

Another option would be to break the laptop up into 3 or more components:  read more »

  • The tablet, running your favourite tablet OS
  • A keyboard, of your choice, which can be carried easily with the tablet for typing-based applications. Able to hold the laptop and connect to it in a permitted way on the plane. Touchpad or connection for mouse.
  • A “block,” whose form factor is now quite variable, with the other stuff.

Documentary on the first six programmers funded and going into production

I am pleased to report that a documentary on the first software developers, the 6 women who were hired to program the ENIAC — the first electronic computer — has after many years received a funding grant sufficient to produce it.

Back in the 90s, my close friend Kathy Kleiman was researching computer history and came upon photos of the ENIAC and wondered who the unnamed women in the photos were. At first, she was told they were models hired to decorate the computer, but further investigation revealed they were the ones programming it.

The six women were professional computers, which was a job title early in the century — people with math degrees hired to perform calculations, in particular ballistic firing tables for the war. Because of the war, skilled women got these jobs, and the best of the team were asked to write software to get the machine to do the tables they were doing by hand. They were given no instruction, just the wiring diagrams and other machine designs, and created the first software applications, including inventing things like the first sort routine and many other things fundamental to our profession.

Because nobody knew the history of these founders of our profession, Kathy sought them out, and was able to record video interviews with 4 of them. These interviews have languished in the can for many years, and alas, all 6 of them are now deceased. I’ve been trying to help for many years, but in a fortuitous lunch, I was able to make the introductions necessary to arrange funding through the efforts and support of my friends Megan Smith, Anne Wojcicki and Lucy Southworth.

Kathy got to make the announcement at Google I/O in a special session about female techmakers featuring an array of accomplished women in technology. She showed a small section of the movie’s trailer. Her section can be seen 9 minutes into the video, and the programmers at 11:30. (Megan accidentally called me Brad Feldman, but I forgive her :-)

Software development is perhaps the most important new profession of the 20th century — and there were many — and the story of the six unsung founders of that profession will finally be presented to a large audience. I’ll announce when the documentary is released.

We need a security standard for USB and other plug-in devices

Studies have shown that if you leave USB sticks on the ground outside an office building, 60% of them will get picked up and plugged into a computer in the building. If you put the company logo on the sticks, closer to 90% of them will get picked up and plugged in.

USB sticks, as you probably know, can pretend to be CD-ROMs and that means on many Windows systems, the computer will execute an “autorun” binary on the stick, giving it control of your machine. (And many people run as administrator.) While other systems may not do this, almost every system allows a USB stick to pretend to be a keyboard, and as a keyboard it also can easily take full control of your machine, waiting for the machine to be idle so you won’t see it if need be. Plugging malicious sticks into computers is how Stuxnet took over Iranian centrifuges, and yet we all do this.

I wish we could trust unknown USB and bluetooth devices, but we can’t, not when they can be pointing devices and mice and drives we might run code from.

New OS generations have to create a trust framework for plug-in hardware, which includes USB and firewire and to a lesser degree even eSata.

When we plug in any device that might have power over the machine, the system should ask us if we wish to trust it, and how much. By default, we would give minimum trust to drives, and no trust to pointing devices or keyboards and the like. CD-Roms would not get the ability to autorun, though it could be granted by those willing to take this risk, poor a choice as it is.

Once we grant the trust, the devices should be able to store a provided key. After that, the device can then use this key to authenticate itself and regain that trust when plugged in again. Going forward all devices should do this.

The problem is they currently don’t, and people won’t accept obsoleting all their devices. Fortunately devices that look like writable drives can just have a token placed on the drive. This token would change every time, making it hard to clone.

Some devices can be given a unique identifier, or a semi-unique one. For devices that have any form of serial number, this can be remembered and the trust level associated with it. Most devices at least have a lot of identifiers related to the make and model of device. Trusting this would mean that once you trusted a keyboard, any keyboard of the same make and model would also be trusted. This is not super-secure but prevents generic attacks — attacks would have to be directly aimed at you. To avoid a device trying to pretend to be every type of keyboard until one is accepted, the attempted connection of too many devices without a trust confirmation should lock out the port until a confirmation is given.

The protocol for verification should be simple so it can be placed on an inexpensive chip that can be mass produced. In particular, the industry would mass produce small USB pass-through authentication devices that should cost no more than $1. These devices could be stuck on the plugs of old devices to make it possible for them to authenticate. They could look like hubs, or be truly pass-through.

All of this would make USB attacks harder. In the other direction, I believe as I have written before that there is value in creating classes of untrusted or less trusted hardware. For example, an untrusted USB drive might be marked so that executable code can’t be loaded from it, only classes of files and archives that are well understood by the OS. And an untrusted keyboard would only be allowed to type in boxes that say they will accept input from an untrusted keyboard. You could write the text of emails with the untrusted keyboard, but not enter URLs into the URL bar or passwords into password boxes. (Browser forms would have to indicate that an untrusted keyboard could be used.) In all cases, a mini text-editor would be available for use with the untrusted keyboard, from where one could cut and paste using a trusted device into other boxes.

A computer that as yet has no trusted devices of a given class would have to trust the first one plugged in. Ie. if you have a new computer that’s never had a keyboard, it has to trust its first keyboard unless there is another way to confirm trust when that first keyboard is plugged in. Fortunately mobile devices all have built in input hardware that can be trusted at manufacture, avoiding this issue. If a computer has lost all its input devices and needs a new one, you could either trust implicitly, or provide a pairing code to type on the new keyboard (would not work for mouse) to show you are really there. But this is only a risk on systems that normally have no input device at all.

For an even stronger level of trust, we might want to be able to encrypt the data going through. This stops the insertion of malicious hubs or other MITM intercepts that might try to log keystrokes or other data. Encryption may not be practical in low power devices that need to be drives and send data very fast, but it would be fine for all low speed devices.

Of course, we should not trust our networks, even our home networks. Laptops and mobile devices constantly roam outside the home network where they are not protected, and then come back inside able to attack if trusted. However, some security designers know this and design for this.

Yes, this adds some extra UI the first time you plug something in. But that’s hopefully rare and this is a big gaping hole in the security of most of our devices, because people are always plugging in USB drives, dongles and more.

Time for the post office to let anybody print postage with no minimums

For some time, the US Postal Service has allowed people to generate barcoded postage. You can do that on the expensive forms of mail such as priority mail and express mail, but if you want to do it on ordinary mail, like 1st class mail or parcel post, you need an account with a postage meter style provider, and these accounts typically include a monthly charge of $10/month or more. For an office, that’s no big deal, and cheaper than the postage meters that most offices used to buy — and the pricing model is based on them to some extent, even though now there is no hardware needed. But for an ordinary household, $120/year is far more than they are going to spend on postage.

There is one major exception I know of — if you buy something via PayPal, they allow you to print a regular postage shipping label with electronic postage. This is nice and convenient, but no good for sending ordinary letters and other small items.

I think the USPS is shooting itself in the foot by not letting people just buy postage online with no monthly fee. The old stamp system is OK for regular letters, and indeed they finally changed things so that old first class stamps still work after price raises, but for anything else you have to keep lots of stamps in supply and you often waste postage, or make a trip to a mailing office. This discourages people from using the post office, and will only hasten its demise. Make it trivial to mail things and people will mail more.

It could be a web printed mailing label as you can use for priority mail, but most software vendors would quickly support such a system. If people wanted, they could even buy “stamps” which were collections of electronic postage in various denominations that could be used by programs so there is no need to handle transactions. Address label printers would all quickly also do postage.

Of course the official suppliers like Endica and stamps.com would fight this completely. They love being official suppliers and charging large fees. They have more lobbying power than ordinary mailers. So the post office is going to quietly slip away into that good night, instead of taking advantage of the fact that it’s the one delivery company that comes to my door every day (for both pick up and delivery) and all the effiencies that provides.

Modify E-book reader designs for digital signs

One of the useful attributes of electronic paper (such as E-Ink) is that it doesn’t take any power to retain an image, it only takes power to change the image. This is good for long-lasting E-readers, and digital signs are one of the other key applications of electronic paper, though today they are sold with a focus on the retail market.

Earlier, I wrote about concepts for a fourth screen which is an always-on wall computer that has effectively no user interface — its purpose is to show you stuff that is probably of interest to you based on time of day and who is looking at the screen. That proposal requires that the display be located where there is power, but there are many locations where wiring in permanent power is not a readily available option.

The typical e-book reader has all the hardware needed to act as a very low-power digital wall display. Such a display would have electronic paper and wifi. It would only wake up very rarely to briefly check, over the wifi (or better still bluetooth) if there is new data to display, in which case it would download it and display it. During these updates, it might also check to see if there is a new updating schedule.

You can do better than wifi, which usually requires a process of associating with an access point, getting an IP address, and then making queries. Bluetooth can connect with lower power. Even better would be a chip which is able to listen constantly at very low power for a special radio pulse (“wake on pulse”) from a powered transmitter, and then power on the rest of the system for data transfer. The panel could be put anywhere, and then a pulse generator would be put somewhere nearby that has power and is close enough to wake up the panel. (It might be something that plugs into a wall outlet and even does networking over the power lines.) This would allow the valuable ability to push information to the panel.

The panel’s battery would of course die in time, so there would need to be a battery swap ability or if need be a means to charge with a temporary extension cord, a battery-powered charger or taking the panel off the wall.

An immediate market for these would be the doors of meeting rooms, so that they can show the schedule for the meeting room. Many hotels and convention centers have screens to do this now, but due to the need for power and other integration, these tend to be quite expensive, while ebook readers are now in the $100 range.

But they would also be useful around the home for 4th screen applications, displaying useful info. They could also be put near fridges or stoves to display recipes and family information. Obviously if you can put in a powered LCD display, that’s going to be able to do more, but without the power constraint more people might use it. They do need to be lit by external light, of course, but also are visible in bright sun in a way that lcds are not. And a product like this might well start eating into the retail digital signage market — anybody know what the price points are these days in that market?

Car users frustrated with their tech

The latest JD Power survey on car satisfaction has a very new complaint that has now the second most annoying item to new car owners namely problems with the voice recognition system in their hands-free interface. This is not too surprising, since voice recognition, especially in cars, is often dreadful. It also reveals that most new tech has lots of UI problems — not every product is the iPod, lauded from the start for its UI.

But one interesting realization in the study is that users have become frustrated at having too many devices with too many UIs. Their car (which now has a touchpad and lots of computer features) uses a different UI from their phone and computer and tablet and whatever. Even if the car has a superb UI, the problem is that it is different, something new to learn and remember.

One might fix this by having the same platform, be it iOS or Android on several of the devices, but that’s a tall order. Car vendors do not want to make a phone one one platform and tick off people used to the other platform.

The answer lies in something the car makers don’t like: Don’t put much of their own smarts in the car at all, and expect the user to slot their own mobile phone or tablet into the car. This might be done with something like Nokia’s “Terminal Mode” where the car’s screen and buttons can be taken over by the phone, or by not having a screen in the car at all, just a standard mounting place.

Some time ago I wrote that cars should stop coming with included radios as they used to 30 years ago, and let the slot in the dashboard where the radio and electronics go become a center for innovation. In particular innovation at the speed of consumer and mobile devices, not innovation at the speed of car companies. But there are too many pressures to stop this from happening. Car companies get to charge a lot for fancy radio and electronics systems in the cars, and they like this. And they like the control over the whole experience. But as they get more complaints they may realize that it’s not the right thing for them to be building. Especially not when the car (and the in-dash system) last for 10 to 15 years, while most consumer electronic devices are obsolete in 1-2 years.

There aren’t that many makes of cars, nor so many mobile platforms, so making custom apps for the car and the mobile platform isn’t that hard. In fact, I would expect you would see lots of competing aftermarket ones if they opened up the market to it. And open source ones too, built by fans of the particular cars.

Terminal mode or a standard mounting port for mobile phones in cars?

It’s very common to use mobile phones for driving activities today. Many people even put in cell phone holders in their cars when they want to use the phones as navigation systems as well as make calls over a bluetooth. There’s even evidence that dashboard mounting reduces the distracted driving phenomenon associated with phones in cars.

Nokia and others are pushing one alternative for the cars that have dashboard screens. This is called “Terminal Mode” and is a protocol so the phone can make use of the display, buttons and touchscreens in the car. Putting the smarts in the phone and making the dash be the dumb peripheral is the right idea, since people upgrade phones frequently and cars not nearly so much. The terminal mode interface can be wireless so the phone does not have to be plugged in, though of course most people like to recharge phones while driving.

Terminal mode will be great if it comes, but it would be good to also push for a standard port on dashboards for mounting mobile phones. Today, most mobile phone holders either stick to the windshield with a suction cup, or clamp onto the vents of the air conditioner. A small port or perhaps flip out lever arm would be handy if standardized on dashboards. The lever arm would offer a standard interface for connecting a specific holder for the specific device. In addition, the port would offer USB wiring so that the holder could offer it to the phone. This would offer power at the very least but could also do data for terminal mode and some interfacing with other elements of the car, including the stereo system, or the onboard-diagnostics bus. Access to other screens in the back (for playing video) and to superior antennas might make sense. While many phones use their USB port to be a peripheral to a PC, some have “USB to go” which allows a device to be either master or peripheral, allowing more interesting functions.

Even with terminal mode, there could be value in having two screens, and more buttons, though of course apps would have to be developed to understand that. However, one simple thing is that a phone could run two apps at once on two screens (or even two apps at once on the larger screen of the car) which would actually be pretty handy.

Watson, game 2

Not much new to report after the second game of the Watson Jeopardy Challenge. I’ve added a few updates to yesterday’s post on Watson and the result was as expected, though Watson struggled a lot more in this game than in the prior round, deciding not to answer many questions due to low confidence and making a few mistakes. In a few cases it was saved by not buzzing fast enough even though it had over 50% confidence, as it would have answered slightly wrong.

Some quick updates from yesterday you will also find in the comments:

  • Toronto’s 2nd busiest airport, the small Island airport, has the official but rarely used name of Billy Bishop. Bishop was one of the top flying aces of WWI, not WWII. Watson’s answer is still not clear, but that it made mistakes like this is not surprising. That it made so few is surprising
  • You can buzz in as soon as Trebek stops speaking. If you buzz early, you can’t buzz again for 0.2 seconds. Watson gets an electronic signal when it is time to buzz, and then physically presses the button. The humans get a light, but they don’t bother looking at it, they try timing when Trebek will finish. I think this is a serious advantage for Watson.
  • This IBM Blog Post gives the details on the technical interface between Watson and the game.
  • Watson may have seemed confident with its large bet of $17,973. But in fact the bet was fixed in advance:
    • Had Jennings bet his whole purse (and got it right) he would have ended up with $41,200.
    • If Watson had lost his bet of 17,973, he would have ended up with $41,201 and bare victory.
    • Both got it right, and Jennings bet low, so it ended up being $77,147 to $24,000.
    • Jennings’ low bet was wise at it assured him of 2nd place and a $300K purse instead of $200K. Knowing he could not beat Watson unless Watson bet stupidly, he did the right thing.
    • Jennings still could have bet more and got 2nd, but there was no value to it, the purse is always $300K
    • If Watson had wanted to 2nd guess, it might have realized Jennings would do this and bet appropriately but that’s not something you can do more than once.
    • As you might expect, the team put a bunch of thought into the betting algorithm as that is one thing computers can do perfectly sometimes. I’ve often seen Jeopardy players lose from bad betting.
  • It still sure seemed like a program sponsored by IBM. But I think it would have been nice if the PI of DeepQA was allowed up on stage for the handshake.
  • I do wish they had programmed a bit of sense of humour into Watson. Fake, but fun.
  • Amusingly Watson got a category about computer keyboards and didn’t understand it.
  • Unlike the human players who will hit the buzzer before they have formed the answer in their minds, in hope that they know it, Watson does not hit unless it has computed a high confidence answer.
  • Watson would have bombed on visual or audio clues. The show has a rule allowing those to be removed from the game for a disabled player, these were applied!
  • A few of the questions had some interesting ironies based on what was going on. I wonder if that was deliberate or not. To be fair, I would think the question-writers would not be told what contest they were writing for.

Watson, come here, I want you

The computer scientist world is abuzz with the game show world over the showdown between IBM’s “Watson” question-answering system and the best human players to play the game Jeopardy. The first game has been shown, with a crushing victory by Watson (in spite of a tie after the first half of the game.)

Tomorrow’s outcome is not in doubt. IBM would not have declared itself ready for the contest without being confident it would win, and they wouldn’t be putting all the advertising out about the contest if they had lost. What’s interesting is how they did it and what else they will be able to do with it.

Dealing with a general question has long been one of the hard problems in AI research. Watson isn’t quite there yet but it’s managed a great deal with a combination of algorithmic parsing and understanding combined with machine learning based on prior Jeopardy games. That’s a must because Jeopardy “answers” (clues) are often written in obfuscated styles, with puns and many idioms, exactly the sorts of things most natural language systems have had a very hard time with.

Watson’s problem is almost all understanding the question. Looking up obscure facts is not nearly so hard if you have a copy of Wikipedia and other databases on hand, particularly one parsed with other state-of-the-art natural language systems, which is what I presume they have. In fact, one would predict that Watson would do the best on the hardest $2,000 questions because these are usually hard because they refer to obscure knowledge, not because it is harder to understand the question. I expect that an evaluation of its results may show that its performance on hard questions is not much worse than on easy ones. (The main thing that would make easy questions easier would be the large number of articles in its database confirming the answer, and presumably boosting its confidence in its answer.) However, my intuition may be wrong here, in that most of Watson’s problems came on the high-value questions.

It’s confidence is important. If it does not feel confident it doesn’t buzz in. And it has a serious advantage at buzzing in, since you can’t buzz in right away on this game, and if you’re an encyclopedia like the two human champions and Watson, buzzing in is a large part of the game. In fact, a fairer game, which Watson might not do as well at, would involve randomly choosing which of the players who buzz in in the first few tenths of a second gets to answer the question, eliminating any reaction time advantage. Watson gets the questions as text, which is also a bit unfair, unless it is given them one word a time at human reading speed. It could do OCR on the screen but chances are it would read faster than the humans. It’s confidence numbers and results are extremely impressive. One reason it doesn’t buzz in is that even with 3,000 cores it takes 2-6 seconds to answer a question.

Indeed a totally fair contest would not have buzzing in time competition at all, and just allow all players who buzz in to answer an get or lose points based on their answer. (Answers would need to be in parallel.)

Watson’s coders know by now that they probably should have coded it to receive wrong answers from other contestants. In one instance it repeated a wrong answer, and in another case it said “What is Leg?” after Jennings had incorrectly answered “What is missing an arm?” in a question about an Olympic athlete. The host declared that right, but the judges reversed that saying that it would be right if a human who was following up the wrong answer said it, but was a wrong answer without that context. This was edited out. Also edited out were 4 crashes by Watson that made the game take 4 hours instead of 30 minutes.

It did not happen in what aired so far, but in the trials, another error I saw Watson make was declining to answer a request to be more specific on an answer. Watson was programmed to give minimalist answers, which often the host will accept as correct, so why take a risk. If the host doesn’t think you said enough he asks for a more specific answer. Watson sometimes said “I can be no more specific.” From a pure gameplay standpoint, that’s like saying, “I admit I am wrong.” For points, one should say the best longer phrase containing the one-word answer, because it just might be right. Though it has a larger chance of looking really stupid — see below for thoughts on that.

The shows also contain total love-fest pieces about IBM which make me amazed that IBM is not listed as a sponsor for the shows, other than perhaps in the name “The IBM Challenge.” I am sure Jeopardy is getting great ratings (just having their two champs back would do that on its own but this will be even more) but I have to wonder if any other money is flowing.

Being an idiot savant

Watson doesn’t really understand the Jeopardy clues, at least not as a human does. Like so many AI breakthroughs, this result comes from figuring out another way to attack the problem different from the method humans use. As a result, Watson sometimes puts out answers that are nonsense “idiot” answers from a human perspective. They cut back a lot on this by only having it answer when it has 50% confidence or higher, and in fact for most of its answers it has very impressive confidence numbers. But sometimes it gives such an answer. To the consternation of the Watson team, it did this on the Final Jeopardy clue, where it answered “Toronto” in the category “U.S. Cities.”  read more »

My phone should know when I start a trip

Every day I get into my car and drive somewhere. My mobile phone has a lot of useful apps for travel, including maps with traffic and a lot more. And I am usually calling them up.

I believe that my phone should notice when I am driving off from somewhere, or about to, and automatically do some things for me. Of course, it could notice this if it ran the GPS all the time, but that’s expensive from a power standpoint, so there are other ways to identify this:

  • If the car has bluetooth, the phone usually associates with the car. That’s a dead giveaway, and can at least be a clue to start looking at the GPS.
  • Most of my haunts have wireless, and the phone associates with the wireless at my house and all the places I work. So it can notice when it disassociates and again start checking the GPS. To get smart, it might even notice the MAC addresses of wireless networks it can’t see inside the house, but which it does see outside or along my usual routes.
  • Of course moving out to the car involves jostling and walking in certain directions (it has a compass.)

Once it thinks it might be in the car, it should go to a mode where my “in the car” apps are easy to get to, in particular the live map of the location with the traffic displayed, or the screen for the nav system. Android has a “car mode” that tries to make it easy to access these apps, and it should enter that mode.

It should also now track me for a while to figure out which way I am going. Depending on which way I head and the time of day, it can probably guess which of my common routes I am going to take. For regular commuters, this should be a no-brainer. This is where I want it to be really smart: Instead of me having to call up the traffic, it should see that I am heading towards a given highway, and then check to see if there are traffic jams along my regular routes. If it sees one, Then it should beep to signal that, and if I turn it on, I should see that traffic jam. This way if I don’t hear it beep, I can feel comfortable that there is light traffic along the route I am taking. (Or that if there is traffic, it’s not traffic I can avoid with alternate routes.)

This is the way I want location based apps to work. I don’t want to have to transmit my location constantly to the cloud, and have the cloud figure out what to do at any given location. That’s privacy invading and uses up power and bandwidth. Instead the phone should have a daemon that detects location “events” that have been programmed into it, and then triggers programs when those events occur. Events include entering and leaving my house or places I work, driving certain roads and so on.

And yes, for tools like shopkick, they can even be entering stores I have registered. And as I blogged at the very beginning of this blog many years ago, we can even have an event for when we enter a store with a bad reputation. The phone can download a database of places and wireless and Bluetooth MACs that should trigger events, and as such the network doesn’t need to know my exact location to make things happen. But most importantly, I don’t want to have to know to ask if there is something important near me, I want the right important things to tell me when I get near them.

Syndicate content