You are here


Serve the multi-monitor market better with thin or removable bezels

A serious proportion of the computer users I know these days have gone multi-monitor. While I strongly recommend the 30" monitor (Dell 3007WFP and cousins or Apple) which I have to everybody, at $1000 it's not the most cost effective way to get a lot of screen real estate. Today 24" 1080p monitors are down to $200, and flat panels don't take so much space, so it makes a lot of sense to have two monitors or more.


A standard OS mini-daemon, saving power and memory

On every system we use today (except the iPhone) a lot of programs want to be daemons -- background tasks that sit around to wait for events or perform certain regular operations. On Windows it seems things are the worst, which is why I wrote before about how Windows needs a master daemon. A master daemon is a single background process that uses a scripting language to perform most of the daemon functions that other programs are asking for. A master daemon will wait for events and fire off more full-fledged processes when they happen.

Design for a universal plug

I've written before about both the desire for universal dc power and more simply universal laptop power at meeting room desks. This week saw the announcement that all the companies selling cell phones in Europe will standardize on a single charging connector, based on micro-USB. (A large number of devices today use the now deprecated Mini-USB plug, and it was close to becoming a standard by default.) As most devices are including a USB plug for data, this is not a big leap, though it turned out a number of devices would not charge from other people's chargers, either from stupidity or malice. (My Motorola RAZR will not charge from a generic USB charger or even an ordinary PC. It needs a special charger with the data pins shorted, or if it plugs into a PC, it insists on a dialog with the Motorola phone tools driver before it will accept a charge. Many suspect this was to just sell chargers and the software.) The new agreement is essentially just a vow to make sure everybody's chargers work with everybody's devices. It's actually a win for the vendors who can now not bother to ship a charger with the phone, presuming you have one or will buy one. It is not required they have the plug -- supplying an adapter is sufficient, as Apple is likely to do. Mp3 player vendors have not yet signed on.

USB isn't a great choice since it only delivers 500ma at 5 volts officially, though many devices are putting 1 amp through it. That's not enough to quickly charge or even power some devices. USB 3.0 officially raised the limit to 900ma, or 4.5 watts.

USB is a data connector with some power provided which has been suborned for charging and power. What about a design for a universal plug aimed at doing power, with data being the secondary goal? Not that it would suck at data, since it's now pretty easy to feed a gigabit over 2 twisted pairs with cheap circuits. Let's look at the constraints

Smart Power

The world's new power connector should be smart. It should offer 5 volts at low current to start, to power the electronics that will negotiate how much voltage and current will actually go through the connector. It should also support dumb plugs, which offer only a resistance value on the data pins, with each resistance value specifying a commonly used voltage and current level.

Real current would never flow until connection (and ground if needed) has been assured. As such, there is minimal risk of arcing or electric shock through the plug. The source can offer the sorts of power it can deliver (AC, DC, what voltages, what currents) and the sink (power using device) can pick what it wants from that menu. Sinks should be liberal in what they take though (as they all have become of late) so they can be plugged into existing dumb outlets through simple adapters.

Style of pins

We want low current plugs to be small, and heavy current plugs to be big. I suggest a triangular pin shape, something like what is shown here. In this design, two main pins can only go in one way. The lower triangle is an optional ground -- but see notes on grounding below.


Anti-atrocity system with airdropped video cameras

Our world has not rid itself of atrocity and genocide. What can modern high-tech do to help? In Bosnia, we used bombs. In Rwanda, we did next to nothing. In Darfur, very little. Here's a proposal that seems expensive at first, but is in fact vastly cheaper than the military solutions people have either tried or been afraid to try. It's the sunlight principle.

First, we would mass-produce a special video recording "phone" using the standard parts and tools of the cell phone industry. It would be small, light, and rechargeable from a car lighter plug, or possibly more slowly through a small solar cell on the back. It would cost a few hundred dollars to make, so that relief forces could airdrop tens or even hundreds of thousands of them over an area where atrocity is taking place. (If they are $400/pop, even 100,000 of them is 40 million dollars, a drop in the bucket compared to the cost of military operations.) They could also be smuggled in by relief workers on a smaller scale, or launched over borders in a pinch. Enough of them so that there are so many that anybody performing an atrocity will have to worry that there is a good chance that somebody hiding in bushes or in a house is recording it, and recording their face. This fear alone would reduce what took place.

Once the devices had recorded a video, they would need to upload it. It seems likely that in these situations the domestic cell system would not be available, or would be shut down to stop video uploads. However, that might not be true, and a version that uses existing cell systems might make sense, and be cheaper because the hardware is off the shelf. It is more likely that some other independent system would be used, based on the same technology but with slightly different protocols.

The anti-atrocity team would send aircraft over the area. These might be manned aircraft (presuming air superiority) or they might be very light, autonomous UAVs of the sort that already are getting cheap in price. These UAVs can be small, and not that high-powered, because they don't need to do that much transmitting -- just a beacon and a few commands and ACKs. The cameras on the ground will do the transmitting. In fact, the UAVs could quite possibly be balloons, again within the budget of aid organizations, not just nations.

Connecting untrusted devices to your computer

My prior post about USB charging hubs in hotel rooms brought up the issue of security, as was the case for my hope for a world with bluetooth keyboards scattered around.

Is it possible to design our computers to let them connect to untrusted devices? Clearly to a degree, in that an ethernet connection is generally always untrusted. But USB was designed to be fully trusted, and that limits it.


Linux distributions, focus on a 1gb flashdrive, not on a CD ISO

I'm looking at you Ubuntu.

For some time now, the standard form for distributing a free OS (ie. Linux, *BSD) has been as a CD-ROM or DVD ISO file. You burn it to a CD, and you can boot and install from that, and also use the disk as a live CD.

There are a variety of pages with instructions on how to convert such an ISO into a bootable flash drive, and scripts and programs for linux and even for windows -- for those installing linux on a windows box.


The perils of recalls of electronic products

Product recalls have been around for a while. You get a notice in the mail. You either go into a dealer at some point, any point, for service, or you swap the product via the mail. Nicer recalls mail you a new product first and then you send in the old one, or sign a form saying you destroyed it. All well and good. Some recalls are done as "hidden warranties." They are never announced, but if you go into the dealer with a problem they just fix it for free, long after the regular warranty, or fix it while working on something else.


Better forms of Will-Call (phone and photo)

Most of us have had to stand in a long will-call line to pick up tickets. We probably even paid a ticket "service fee" for the privilege. Some places are helping by having online printable tickets with a bar code. However, that requires that they have networked bar code readers at the gate which can detect things like duplicate bar codes, and people seem to rather have giant lines and many staff rather than get such machines.

Can we do it better?

Making RAID easier

Hard disks fail. If you prepared properly, you have a backup, or you swap out disks when they first start reporting problems. If you prepare really well you have offsite backup (which is getting easier and easier to do over the internet.)

One way to protect yourself from disk failures is RAID, especially RAID-5. With RAID, several disks act together as one. The simplest protecting RAID, RAID-1, just has 2 disks which work in parallel, known as mirroring. Everything you write is copied to both. If one fails, you still have the other, with all your data. It's good, but twice as expensive.

RAID-5 is cleverer. It uses 3 or more disks, and uses error correction techniques so that you can store, for example, 2 disks worth of data on 3 disks. So it's only 50% more expensive. RAID-5 can be done with many more disks -- for example with 5 disks you get 4 disks worth of data, and it's only 25% more expensive. However, having 5 disks is beyond most systems and has its own secret risk -- if 2 of the 5 disks fail at once -- and this does happen -- you lose all 4 disks worth of data, not just 2 disks worth. (RAID-6 for really large arrays of disks, survives 2 failures but not 3.)

Now most people who put in RAID do it for more than data protection. After all, good sysadmins are doing regular backups. They do it because with RAID, the computer doesn't even stop when a disk fails. You connect up a new disk live to the computer (which you can do with some systems) and it is recreated from the working disks, and you never miss a beat. This is pretty important with a major server.

But RAID has value to those who are not in the 99.99% uptime community. Those who are not good at doing manual backups, but who want to be protected from the inevitable disk failures. Today it is hard to set up, or expensive, or both. There are some external boxes like the "readynas" that make it reasonably easy for external disks, but they don't have the bandwidth to be your full time disks.

RAID-5 on old IDE systems was hard, they usually could truly talk to only 2 disks at a time. The new SATA bus is much better, as many motherboards have 4 connectors, though soon one will be required by blu-ray drives.


A near-ZUI encrypted disk, for protection from Customs

Recently we at the EFF have been trying to fight new rulings about the power of U.S. customs. Right now, it's been ruled they can search your laptop, taking a complete copy of your drive, even if they don't have the normally required reasons to suspect you of a crime. The simple fact that you're crossing the border gives them extraordinary power.

We would like to see that changed, but until then what can be done? You can use various software to encrypt your hard drive -- there are free packages like truecrypt, and many laptops come with this as an option -- but most people find having to enter a password every time you boot to be a pain. And customs can threaten to detain you until you give them the password.

There are some tricks you can pull, like having a special inner-drive with a second password that they don't even know to ask about. You can put your most private data there. But again, people don't use systems with complex UIs unless they feel really motivated.

What we need is a system that is effectively transparent most of the time. However, you could take special actions when going through customs or otherwise having your laptop be out of your control.

Windows needs a master daemon

It seems that half the programs I try and install under Windows want to have a "daemon" process with them, which is to say a portion of the program that is always running and which gets a little task-tray icon from which it can be controlled. Usually they want to also be run at boot time. In Windows parlance this is called a service.

OCR Page numbers and detect double feed

I'm scanning my documents on an ADF document scanner now, and it's largely pretty impressive, but I'm surprised at some things the system won't do.

Double page feeding is the bane of document scanning. To prevent it, many scanners offer methods of double feed detection, including ultrasonic detection of double thickness and detection when one page is suddenly longer than all the others (because it's really two.)


How about standby & hibernate together

PCs can go into standby mode (just enough power to preserve the RAM and do wake-on-lan) and into hibernate mode (where they write out the RAM to disk, shut down entirely and restore from disk later) as well as fully shut down.


Virtual machines need to share memory

A big trend in systems operation these days is the use of virtual machines -- software systems which emulate a standalone machine so you can run a guest operating system as a program on top of another (host) OS. This has become particularly popular for companies selling web hosting. They take one fast machine and run many VMs on it, so that each customer has the illusion of a standalone machine, on which they can do anything.


Laptops could get smart while power supplies stay stupid

If you have read my articles on power you know I yearn for the days when we get smart power so we have have universal supplies that power everything. This hit home when we got a new Thinkpad Z61 model, which uses a new power adapter which provides 20 volts at 4.5 amps and uses a new, quite rare power tip which is 8mm in diameter. For almost a decade, thinkpads used 16.5 volts and used a fairly standard 5.5mm plug. It go so that some companies standardized on Thinkpads and put cheap 16 volt TP power supplies in all the conference rooms, allowing employees to just bring their laptops in with no hassle.

Lenovo pissed off their customers with this move. I have perhaps 5 older power supplies, including one each at two desks, one that stays in the laptop bag for travel, one downstairs and one running an older ThinkPad. They are no good to me on the new computer.

Lenovo says they knew this would annoy people, and did it because they needed more power in their laptops, but could not increase the current in the older plug. I'm not quite sure why they need more power -- the newer processors are actually lower wattage -- but they did.

Here's something they could have done to make it better.


Steps closer to more universal power supplies

I've written before about both the desire for universal dc power and more simply universal laptop power at meeting room desks.

Today I want to report we're getting a lot closer. A new generation of cheap "buck and boost" ICs which can handle more serious wattages with good efficiency has come to the market. This means cheap DC to DC conversion, both increasing and decreasing voltages. More and more equipment is now able to take a serious range of input voltages, and also to generate them. Being able to use any voltage is important for battery powered devices, since batteries start out with a high voltage (higher than the one they are rated for) and drop over their time to around 2/3s of that before they are viewed as depleted. (With some batteries, heavy depletion can really hurt their life. Some are more able to handle it.)

With a simple buck converter chip, at a cost of about 10-15% of the energy, you get a constant voltage out to matter what the battery is putting out. This means more reliable power and also the ability to use the full capacity of the battery, if you need it and it won't cause too much damage. These same chips are in universal laptop supplies. Most of these supplies use special magic tips which fit the device they are powering and also tell the supply what voltage and current it needs.


A way to leave USB power on during standby

Ok, I haven't had a new laptop in a while so perhaps this already happens, but I'm now carrying more devices that can charge off the USB power, including my cell phone. It's only 2.5 watts, but it's good enough for many purposes.


The dark ages of lost data are over

For much of history, we've used removable media for backup. We've used tapes of various types, floppy disks, disk cartridges, and burnable optical disks. We take the removable media and keep a copy offsite if we're good, but otherwise they sit for a few decades until they can't be read, either because they degraded or we can't find a reader for the medium any more.


Standardize computer access in hotels, and vnc everywhere

Hotels are now commonly sporting flat widescreen TVs, usually LCD HDTVs at the 720p resolution, which is 1280 x 720 or similar. Some of these TVs have VGA ports or HDMI (DVI) ports, or they have HDTV analog component video (which is found on some laptops but not too many.) While 720p resolution is not as good as the screens on many laptops, it makes a world of difference on a PDA. As our phone/PDA devices become more like the iPhone, it would be very interesting to see hotels guarantee that their room offers the combination of:

E-mail programs should be time-management programs

For many of us, E-mail has become our most fundamental tool. It is not just the way we communicate with friends and colleagues, it is the way that a large chunk of the tasks on our "to do" lists and calendars arrive. Of course, many E-mail programs like Outlook come integrated with a calendar program and a to-do list, but the integration is marginal at best. (Integration with the contact manager/address book is usually the top priority.)


Subscribe to RSS - Technology