You are here


V2V and connected car part 3: Broadcast data

Earlier in part one I examined why it's hard to make a networked technology based on random encounters. In part two I explored how V2V might be better achieved by doing things phone-to-phone.

For this third part of the series on connected cars and V2V I want to look at the potential for broadcast data and other wide area networking.


Solving V2V Part 2: Make it Phone to Phone

Last week, I began in part 1 by examining the difficulty of creating a new network system in cars when you can only network with people you randomly encounter on the road. I contend that nobody has had success in making a new networked technology when faced with this hurdle.

This has been compounded by the fact that the radio spectrum at 5.9ghz which was intended for use in short range communications (DSRC) from cars is going to be instead released as unlicenced spectrum, like the WiFi bands. I think this is a very good thing for the world, since unlicenced spectrum has generated an unprecedented radio revolution and been hugely beneficial for everybody.

But surprisingly it might be something good for car communications too. The people in the ITS community certainly don't think so. They're shocked, and see this as a massive setback. They've invested huge amounts of efforts and careers into the DSRC and V2V concepts, and see it all as being taken away or seriously impeded. But here's why it might be the best thing to ever happen to V2V.

The innovation in mobile devices and wireless protocols of the last 1-2 decades is a shining example to all technology. Compare today's mobile handsets with 10 years ago, when the Treo was just starting to make people think about smartphones. (Go back a couple more years and there weren't any smartphones at all.) Every year there are huge strides in hardware and software, and as a result, people are happily throwing away perfectly working phones every 2 years (or less) to get the latest, even without subsidies. Compare that to the electronics in cars. There is little in your car that wasn't planned many years ago, and usually nothing changes over the 15-20 year life of the car. Car vendors are just now toying with the idea of field upgrades and over-the-air upgrades.

Car vendors love to sell you fancy electronics for your central column. They can get thousands of dollars for the packages -- packages that often don't do as much as a $300 phone and get obsolete quickly. But customers have had enough, and are now forcing the vendors to give up on owning that online experience in the car and ceding it to the phone. They're even getting ready to cede their "telematics" (things like OnStar) to customer phones.

I propose this: Move all the connected car (V2V, V2I etc.) goals into the personal mobile device. Forget about the mandate in cars.

The car mandate would have started getting deployed late in this decade. And it would have been another decade before deployment got seriously useful, and another decade until deployment was over 90%. In that period, new developments would have made all the decisions of the 2010s wrong and obsolete. In that same period, personal mobile devices would have gone through a dozen complete generations of new technology. Can there be any debate about which approach would win?


Perils of the long range electric car

You've probably seen the battle going on between Elon Musk of Tesla and the New York Times over the strongly negative review the NYT made of a long road trip in a Model S. The reviewer ran out of charge and had a very rough trip with lots of range anxiety. The data logs published by Tesla show he made a number of mistakes, didn't follow some instructions on speed and heat and could have pulled off the road trip if he had done it right.

Both sides are right, though. Tesla has made it possible to do the road trip in the Model S, but they haven't made it easy. It's possible to screw it up, and instructions to go slow and keep the heater low are not ones people want to take. 40 minute supercharges are still pretty long, they are not good for the battery and it's hard to believe that they scale since they take so long. While Better Place's battery swap provides a tolerable 5 minute swap, it also presents scaling issues -- you don't want to show up at a station that does 5 minute swaps and be 6th in line.

The Tesla Model S is an amazing car, hugely fun to drive and zippy, cool on the inside and high tech. Driving around a large metro area can be done without range anxiety, which is great. I would love to have one -- I just love $85K more. But a long road trip, particularly on a cold day? There are better choices. (And in the Robocar world when you can get cars delivered, you will get the right car for your trip delivered.)

Electric cars have a number of worthwhile advantages, and as battery technologies improve they will come into their own. But let's consider the economics of a long range electric. The Tesla Model S comes in 3 levels, and there is a $20,000 difference between the 40khw 160 mile version and the 85kwh 300 mile version. It's a $35K difference if you want the performance package.

The unspoken secret of electric cars is that while you can get the electricity for the model S for just 3 cents/mile at national grid average prices (compared to 12 cents/mile for gasoline in a 30mpg car and 7 cents/mile in a 50mpg hybrid) this is not the full story. You also pay, as you can see, a lot for the battery. There are conflicting reports on how long a battery pack will last you (and that in turn varies on how you use and abuse it.) If we take the battery lifetime at 150,000 miles -- which is more than most give it -- you can see that the extra 45kwh add-on in the Tesla for $20K is costing about 13 cents/mile. The whole battery pack in the 85kwh Telsa, at $42K estimated, is costing a whopping 28 cents/mile for depreciation.

Here's a yikes. At a 5% interest rate, you're paying $2,100 a year in interest on the $42,000 Tesla S 85kwh battery pack. If you go the national average 12,000 miles/year that's 17.5 cents/mile just for interest on the battery. Not counting vehicle or battery life. Add interest, depreciation and electricity and it's just under 40 cents/mile -- similar to a 10mpg Hummer H2. (I bet most Tesla Model S owners do more than that average 12K miles/year, which improves this.)

In other words, the cost of the battery dwarfs the cost of the electricity, and sadly it also dwarfs the cost of gasoline in most cars. With an electric car, you are effectively paying most of your fuel costs up front. You may also be adding home charging station costs. This helps us learn how much cheaper we must make the battery.

It's a bit easier in the Nissan LEAF, whose 24kwh battery pack is estimated to cost about $15,000. Here if it lasts 150K miles we have 10 cents/mile plus the electricity, for a total cost of 13 cents/mile which competes with gasoline cars, though adding interest it's 19 cents/mile -- which does not compete. As a plus, the electric car is simpler and should need less maintenance. (Of course with as much as $10,000 in tax credits, that battery pack can be a reasonable purchase, at taxpayer expense.) A typical gasoline car spends about 5 cents/mile on non-tire maintenance.

This math changes a lot with the actual battery life, and many people are estimating that battery lives will be worse than 150K miles and others are estimating more. The larger your battery pack and the less often you fully use it, the longer it lasts. The average car doesn't last a lot more than 150k miles, at least outside of California.

The problem with range anxiety becomes more clear. The 85kwh Tesla lets you do your daily driving around your city with no range anxiety. That's great. But to get that you buy a huge battery pack. But you only use that extra range rarely, though you spend a lot to get it. Most trips can actually be handled by the 70 mile range Leaf, though with some anxiety. You only need all that extra battery for those occasional longer trips. You spend a lot of extra money just to use the range from time to time.

A drone with a tele-doctor and defibrillator in 100 seconds?

There's a lot of excitement about the potential of autonomous drones, be they nimble quadcopters or longer-range fixed wing or hybrid aircraft. A group of students from Singularity University, for example, has a project called MatterNet working to provide transportation infrastructure for light cargo in regions of Africa where roads wash out for half the year.

Closer to home, these drones are not yet legal for commercial use, while government agencies are using them secretly.

Time for delivery companies to work weekends

This time of year I do a lot of online shopping, and my bell rings with many deliveries. But today and tomorrow, not Saturday. The post office comes Saturday but has announced it wants to stop doing that to save money. They do need to save money, but this is the wrong approach. I think the time has come for Saturday and Sunday delivery to be the norm for UPS, Fedex and the rest.

What to do in high speed rail?

Last week, new studies came back on the California High Speed Rail project. They have raised the estimated cost to $99 billion, and dropped the ridership estimate to 36.8 million and $5.5 billion in annual revenue. Note that only around 20 million people currently fly the SF to LA corridor -- they expect to not just capture most of those but large numbers of central valley trips.

Paying drivers to leave the road

Congestion on the roads has a variety of sources. These include accidents of course, reductions in road capacity, irrational human driving behaviours and others, but most of all you get congestion when more cars are trying to use a road than it has capacity for.

That's why the two main success stories in congestion today are metering lights and downtown congestion charging. Metering lights limit how fast cars can enter the highway, so that you don't overload it and traffic flows smoothly. By waiting a bit at the metering light you get a fast ride once on the highway. Sometimes though, especially when the other factors like accidents come into play, things still gum up.

Now that more and more cars are connected (by virtue just of the smartphone the driver carries if nothing else) the potential will open up for something else in congestion -- finding ways to encourage drivers to leave a congested road.

ITS vehicle to vehicle demo at ITS World Congress

I'm just back from the "ITS World Congress" an annual meeting of people working on "Intelligent Transportation Systems" which means all sorts of applications of computers and networking to transportation, particularly cars. A whole bunch of stuff gets covered there, including traffic monitoring and management, toll collection, transit operations etc. but what's of interest to robocar enthusiasts is what goes into cars and streets. People started networking cars with systems like OnStar, now known in the generic sense as "telematics" but things have grown since then.

The big effort involves putting digital radios into cars. The radio system, known by names like 802.11p, WAVE and DSRC involves an 802.11 derived protocol in a new dedicated band at 5.9ghz. The goal is a protocol suitable for safety applications, with super-fast connections and reliable data. Once the radios in the car, the car will be able to use it to talk to other cars (known as V2V) or to infrastructure facilities such as traffic lights (known as V2I.) The initial planned figured that the V2I services would give you internet in your car, but the reality is that 4G cellular networks have taken over that part of the value chain.

Coming up with value for V2V is a tricky proposition. Since you can only talk to cars very close to you, it's not a reliable way to talk with any particular car. Relaying through the wide area network is best for that unless you need lots of bandwidth or really low latency. There's not much that needs lots of bandwidth, but safety applications do demand both low latency and a robust system that doesn't depend on infrastructure.

The current approach to safety applications is to have equipped cars transmit status information. Formerly called a "here I am" this is a broadcast of location, direction, speed and signals like brake lights, turn signals etc. If somebody else's car is transmitting that, your car can detect their presence, even if you can't see them. This lets your car detect and warn about things like:

  • The car 2 or 3 in front of you, hidden by the truck in front of you, that has hit the brakes or stalled
  • People in your blind spot, or who are coming up on you really fast when your're about to change lanes
  • Hidden cars coming up when you want to turn left, or want to pass on a rural highway
  • Cars about to run red lights or blow stop signs at an intersection you're about to go through
  • Privacy is a big issue. The boxes change their ID every minute so you can't track a car over a long distance unless you can follow it over every segment, but is that enough? They say a law is needed so the police don't use the speed broadcast to ticket you, but will it stay that way?

It turns out that intersection collisions are a large fraction of crashes, so there's a big win there, if you can do it. The problem is one of critical mass. Installed in just a few cars, such a system is extremely unlikely to provide aid. For things like blindspot detection, existing systems that use cameras or radars are far better because they see all cars, not just those with radios. Even with 10% penetration, there's only a 1% chance any given collision could be prevented with the system, though it's a 10% chance for the people who seek out the system. (Sadly, those who seek out fancy safety systems are probably less likely to be the ones blowing through red lights, and indeed another feature of the system -- getting data from traffic lights -- already can do a lot to stop an equipped car from going through a red light by mistake.)

Car users frustrated with their tech

The latest JD Power survey on car satisfaction has a very new complaint that has now the second most annoying item to new car owners namely problems with the voice recognition system in their hands-free interface. This is not too surprising, since voice recognition, especially in cars, is often dreadful. It also reveals that most new tech has lots of UI problems -- not every product is the iPod, lauded from the start for its UI.

Terminal mode or a standard mounting port for mobile phones in cars?

It's very common to use mobile phones for driving activities today. Many people even put in cell phone holders in their cars when they want to use the phones as navigation systems as well as make calls over a bluetooth. There's even evidence that dashboard mounting reduces the distracted driving phenomenon associated with phones in cars.

Another pedal-powered monorail: Skyride

Last year I wrote about an interesting but simple pedal powered monorail/PRT system called Shweeb which had won a prize/investment from Google. Recent announcements show they are not alone in this concept. Scott Olson, the original developer of the Rollerblade, has founded a company called Skyride Technologies to build their own version of a pedal powered suspended monorail.

My phone should know when I start a trip

Every day I get into my car and drive somewhere. My mobile phone has a lot of useful apps for travel, including maps with traffic and a lot more. And I am usually calling them up.

I believe that my phone should notice when I am driving off from somewhere, or about to, and automatically do some things for me. Of course, it could notice this if it ran the GPS all the time, but that's expensive from a power standpoint, so there are other ways to identify this:

Needed: An international hand signal for "There's a problem with your car"

You're driving down the road. You see another car on the road with you that has a problem. The lights are off and it's dusk. There is something loose that may break off. There's something left on the roof or the trunk is not closed -- any number of things. How do you tell the driver that they need to stop and check? I've tried sometimes and they mostly think you are some sort of crazy, driving to close to them, waving at them, honking or shouting. Perhaps after a few people do it they figure it out.

I'm loving the Shweeb concept

There was a bit of a stir when Google last week announced that one of the winners of their 10^100 contest would be Shweeb, a pedal-powered monorail from New Zealand that has elements of PRT. Google will invest $1M in Shweeb to help them build a small system, and if it makes any money on the investment, that will go into transportation related charities.

While I had a preference that Google fund a virtual world for developing and racing robocars I have come to love a number of elements about Shweeb, though it's not robocars and the PRT community seems to not think it's PRT. I think it is PRT, in that it's personal, public and, according to the company, relatively rapid through the use of offline stations and non-stop point to point trips. PRT is an idea from the sixties that makes sense but has tried for almost 50 years to get transit planners to believe in it and build it. A micro-PRT has opened as a Heathrow parking shuttle, but in general transit administrators simply aren't early adopters. They don't innovate.

What impresses me about Shweeb is its tremendous simplicity. While it's unlikely to replace our cars or transit systems, it is simple enough that it can actually be built. Once built, it can serve as a testbed for many of PRT's concepts, and go through incremental improvements.

Electric car vendors: bundle in short-term gasoline car rentals, with charging

Looking at new electric cars like the Nissan Leaf, we see that to keep costs down, cars with a range of 100 miles are on offer. For certain city cars, particularly in 2-car families, this should be just fine. In my particular situation, being just under 50 miles from San Francisco, this won't work. It's much too close to the edge, and trips there would require a full charge, and visits to other stops during the trip or finding parking with charging. Other people are resisting the electrics for lesser reasons, since if you ever do exceed the range it's probably an 8 hour wait.

An alternative is a serial hybrid like the Chevy Volt. This has 40 miles range but a gasoline generator to provide the rest of the range and no "range anxiety." Good, but more expensive and harder to maintain because electric cars are much simpler than gasoline cars.

Here's an alternative: The electric car vendor should cut a deal with car rental services like ZipCar and Hertz. If you're ever on a round trip where there is range anxiety, tell the car. It will use its computer and internal data connection to locate a suitable rental location that is along your route and has a car for you. It will make all appropriate reservations. Upon arrival, your electric car would transmit a signal to the rental car so that it flashes its lights to guide you and unlocks its doors for you. (The hourly car rental companies all have systems already where a transmitter unlocks the car for you.)

In many cases you would then pause, pull the rental out of its spot and put your electric in that spot. With more advanced robocar technologies, the rental would actually pull out of its spot for you. Zipcar has reserved spots for its vehicles and normally it makes no sense for the renter to have just pulled up in a car and need the spot, but it should work just fine. At Hertz or similar companies another open spot may be available.

Then off you go in your gasoline car. To make things as easy as possible, the negotiated contract should include refill of gasoline at a fair market price rather than the insane inflated price that car rental houses charge. Later come back and swap again.

The radio will be a major innovation center in cars, near-term

I've been predicting a great deal of innovation in cars with the arrival of robocars and other automatic driving technologies. But there's a lot of other computerization and new electronics that will be making its way into cars, and to make that happen, we need to make the car into a platform for innovation, rather than something bought as a walled garden from the car vendor.

In the old days, it was fairly common to get a car without a radio, and to buy the radio of your choice. This happened even in higher end cars. However, the advantages in sound quality and dash integration from a factory-installed radio started to win out, especially with horizontal market Japanese companies who were both good at cars and good at radios.

For real innovation, you want a platform, where aftermarket companies come in and compete. And you want early adopters to be able to replace what they buy whenever they get the whim. We replace our computers and phones far more frequently than our cars and the radios inside them.

To facilitate this, I think the car's radio and "occupant computer" should be merged, but split into three parts:

  1. The speakers and power amplifier, which will probably last the life of the car, and be driven with some standard interface such as 7.1 digital audio over optical fiber.
  2. The "guts" which probably live in the trunk or somewhere else not space constrained, and connect to the other parts
  3. The "interface" which consists of the dashboard panel and screen, with controls, and any other controls and screens, all wired with a network to the guts.

Ideally the hookup between the interface and the guts is a standardized protocol. I think USB 3.0 can handle it and has the bandwidth to display screens on the dashboard, and on the back of the headrests for rear passenger video. Though if you want to imagine an HDTV for the passengers, its possible that we would add a video protocol (like HDMI) to the USB. But otherwise USB is general enough for everything else that will connect to the guts. USB's main flaw is its master-slave approach, which means the guts needs to be both a master, for control of various things in the car, and a slave, for when you want to plug your laptop into the car and control elements in the car -- and the radio itself.

Of course there should be USB jacks scattered around the car to plug in devices like phones and memory sticks and music players, as well as to power devices up on the dash, down in the armrests, in the trunk, under the hood, at the mirror and right behind the grille.

Finally there need to be some antenna wires. That's harder to standardize but you can be we need antennas for AM/FM/TV, satellite radio, GPS, cellular bands, and various 802.11 protocols including the new 802.11p. In some cases, however, the right solution is just to run USB 3.0 to places an antenna might go, and then have a receiver or tranceiver with integrated antenna which mounts there. A more general solution is best.

This architecture lets us replace things with the newest and latest stuff, and lets us support new radio protocols which appear. It lets us replace the guts if we have to, and replace the interface panels, or customize them readily to particular cars.

Transit energy chart updated from latest DoE book

Back in 2008 I wrote a controversial article about whether green transit was a myth in the USA. Today I updated the main chart in that article based on new releases of the Department of Energy Transportation Energy Fact Book 2009 edition. The car and SUV numbers have stayed roughly the same (at about 3500 BTUs/passenger-mile for the average car under average passenger load.)

What's new?

Border Travel in an underpants bomber world

I just landed on a flight from Toronto to San Francisco. If you were inside the USA you may not have heard about the various crazy rules applied to travel to the USA, or at least not experienced them. While we were away the rules changed every day, and perhaps every hour.

911 should be able to stop a train

It was over 5 years ago that I blogged about a robot that would travel in front of a train to spot cars stuck on the tracks in time to stop.

I recently read a local story about an RV that was demolished while stuck on the tracks here. The couple had time to talk to 911, who told them to get out, and it's not clear from the story but it seems like a moderate amount of time may have passed (a couple of minutes) before their RV was smashed.


Subscribe to RSS - Transportation