Transportation

Perils of the long range electric car

You’ve probably seen the battle going on between Elon Musk of Tesla and the New York Times over the strongly negative review the NYT made of a long road trip in a Model S. The reviewer ran out of charge and had a very rough trip with lots of range anxiety. The data logs published by Tesla show he made a number of mistakes, didn’t follow some instructions on speed and heat and could have pulled off the road trip if he had done it right.

Both sides are right, though. Tesla has made it possible to do the road trip in the Model S, but they haven’t made it easy. It’s possible to screw it up, and instructions to go slow and keep the heater low are not ones people want to take. 40 minute supercharges are still pretty long, they are not good for the battery and it’s hard to believe that they scale since they take so long. While Better Place’s battery swap provides a tolerable 5 minute swap, it also presents scaling issues — you don’t want to show up at a station that does 5 minute swaps and be 6th in line.

The Tesla Model S is an amazing car, hugely fun to drive and zippy, cool on the inside and high tech. Driving around a large metro area can be done without range anxiety, which is great. I would love to have one — I just love $85K more. But a long road trip, particularly on a cold day? There are better choices. (And in the Robocar world when you can get cars delivered, you will get the right car for your trip delivered.)

Electric cars have a number of worthwhile advantages, and as battery technologies improve they will come into their own. But let’s consider the economics of a long range electric. The Tesla Model S comes in 3 levels, and there is a $20,000 difference between the 40khw 160 mile version and the 85kwh 300 mile version. It’s a $35K difference if you want the performance package.

The unspoken secret of electric cars is that while you can get the electricity for the model S for just 3 cents/mile at national grid average prices (compared to 12 cents/mile for gasoline in a 30mpg car and 7 cents/mile in a 50mpg hybrid) this is not the full story. You also pay, as you can see, a lot for the battery. There are conflicting reports on how long a battery pack will last you (and that in turn varies on how you use and abuse it.) If we take the battery lifetime at 150,000 miles — which is more than most give it — you can see that the extra 45kwh add-on in the Tesla for $20K is costing about 13 cents/mile. The whole battery pack in the 85kwh Telsa, at $42K estimated, is costing a whopping 28 cents/mile for depreciation.

Here’s a yikes. At a 5% interest rate, you’re paying $2,100 a year in interest on the $42,000 Tesla S 85kwh battery pack. If you go the national average 12,000 miles/year that’s 17.5 cents/mile just for interest on the battery. Not counting vehicle or battery life. Add interest, depreciation and electricity and it’s just under 40 cents/mile — similar to a 10mpg Hummer H2. (I bet most Tesla Model S owners do more than that average 12K miles/year, which improves this.)

In other words, the cost of the battery dwarfs the cost of the electricity, and sadly it also dwarfs the cost of gasoline in most cars. With an electric car, you are effectively paying most of your fuel costs up front. You may also be adding home charging station costs. This helps us learn how much cheaper we must make the battery.

It’s a bit easier in the Nissan LEAF, whose 24kwh battery pack is estimated to cost about $15,000. Here if it lasts 150K miles we have 10 cents/mile plus the electricity, for a total cost of 13 cents/mile which competes with gasoline cars, though adding interest it’s 19 cents/mile — which does not compete. As a plus, the electric car is simpler and should need less maintenance. (Of course with as much as $10,000 in tax credits, that battery pack can be a reasonable purchase, at taxpayer expense.) A typical gasoline car spends about 5 cents/mile on non-tire maintenance.

This math changes a lot with the actual battery life, and many people are estimating that battery lives will be worse than 150K miles and others are estimating more. The larger your battery pack and the less often you fully use it, the longer it lasts. The average car doesn’t last a lot more than 150k miles, at least outside of California.

The problem with range anxiety becomes more clear. The 85kwh Tesla lets you do your daily driving around your city with no range anxiety. That’s great. But to get that you buy a huge battery pack. But you only use that extra range rarely, though you spend a lot to get it. Most trips can actually be handled by the 70 mile range Leaf, though with some anxiety. You only need all that extra battery for those occasional longer trips. You spend a lot of extra money just to use the range from time to time.  read more »

Is the California High Speed Rail Plan ignoring accelerating technological change?

(Of late I have been writing a few articles for some other online sites. The following is an article that appeared on Forbes.com It was also commented on positively and negatively with angry threads.)

There’s been much debate in the USA about High Speed Rail (HSR) and most notably the giant project aimed at moving 20 to 24 million passengers a year through the California central valley, and in particular from downtown LA to downtown San Francisco in 2 hours 40 minutes.

There’s been big debate about the projected cost ($68B to $99B) and the inability of projected revenues to cover interest on the capital let alone operating costs. The project is beginning with a 130 mile segment in the central valley to make use of federal funds. This could be a “rail to nowhere” connecting no big towns and with no trains on it. By 2028 they plan to finally connect SF and LA.

The debate about the merits of this train is extensive and interesting, but its biggest flaw is that it is rooted in the technology of the past and present day. Indeed, HSR itself is around 50 years old, and the 350 kph top speed of the planned line was attained by the French TGV over 30 years ago.

The reality of the world, however, is that technology is changing very fast, and in some fields like computing at an exponential rate. Transportation has not been used to such rapid rates of change, but that protection is about to end. HSR planners are comparing their systems to other 20th century systems and not planning for what 2030 will actually hold.

At Singularity University, our mission is to study and teach about the effects of these rapidly changing technologies. Here are a few areas where new technology will disrupt the plans of long-term HSR planners:

Self-Driving Cars

Cars that can drive and deliver themselves left the pages of science fiction and entered reality in the 2000s thanks to many efforts, including the one at Google. (Disclaimer: I am a consultant to, but not a spokesman for that team.) Readers of my own blog will know it is one of my key areas of interest. By 2030 such vehicles are likely to be common, and in fact it’s quite probable they will be able to travel safely on highways at faster speeds than we trust humans to drive. They could also platoon to become more efficient.

Their ability to deliver themselves is both boon and bane to rail transit. They can offer an excellent “last/first mile” solution to take people from their driveways to the train stations — for it is door to door travel time that people care about, not airport-to-airport or downtown-to-downtown. The HSR focus on a competitive downtown-to-downtime time ignores the fact that only a tiny fraction of passengers will want that precise trip.

Self-delivering cars could offer the option of mobility on demand in a hired vehicle that is the right vehicle for the trip — often a light, efficient single passenger vehicle that nobody would buy as their only car today. These cars will offer a more convenient and faster door-to-door travel time on all the modest length trips (100 miles or less) in the central valley. Because the passenger count estimates for the train exceed current air-travel counts in the state, they are counting heavily on winning over those who currently drive cars in the central valley, but they might not win many of them at all.

The cars won’t beat the train on the long haul downtown SF to downtown LA. But they might well be superior or competitive (if they can go 100mph on I-5 or I-99) on the far more common suburb-to-suburb door to door trips. But this will be a private vehicle without a schedule to worry about, a nice desk and screen and all the usual advantages of a private vehicle.

Improved Air Travel

The air travel industry is not going to sit still. The airlines aren’t going to just let their huge business on the California air corridor disappear to the trains the way the HSR authority hopes. These are private companies, and they will cut prices, and innovate, to compete. They will find better solutions to the security nightmare that has taken away their edge, and they’ll produce innovative products we have yet to see. The reality is that good security is possible without requiring people arrive at airports an hour before departure, if we are driven to make it happen. And the trains may not remain immune from the same security needs forever.

On the green front, we already see Boeing’s new generation of carbon fiber planes operating with less fuel. New turboprops are quiet and much more efficient, and there is more to come.

The fast trains and self-driving cars will help the airports. Instead of HSR from downtown SF to downtown LA, why not take that same HSR just to the airport, and clear security while on the train to be dropped off close to the gate. Or imagine a self-driving car that picks you up on the tarmac as you walk off the plane and whisks you directly to your destination. Driven by competition, the airlines will find a way to take advantage of their huge speed advantage in the core part of the journey.

Self-driving cars that whisk people to small airstrips and pick them up at other small airstrips also offer the potential for good door-to-door times on all sorts of routes away from major airports. The flying car may never come, but the seamless transition from car to plane is on the way.

We may also see more radical improvements here. Biofuels may make air travel greener, and lighter weight battery technologies, if they arrive thanks to research for cars, will make the electric airplane possible. Electric aircraft are not just greener — it becomes more practical to have smaller aircraft and do vertical take-off and landing, allowing air travel between any two points, not just airports.

These are just things we can see today. What will the R&D labs of aviation firms come up with when necesessity forces them towards invention?

Improved Rail

Rail technology will improve, and in fact already is improving. Even with right-of-way purchased, adaptation of traditional HSR to other rail forms may be difficult. Expensive, maglev trains have only seen some limited deployment, and while also expensive and theoretical, many, including the famous Elon Musk, have proposed enclosed tube trains (evacuated or pneumatic) which could do the trip faster than planes. How modern will the 1980s-era CHSR technology look to 2030s engineers?

Telepresence

Decades after its early false start, video conferencing is going HD and starting to take off. High end video meeting systems are already causing people to skip business trips, and this trend will increase. At high-tech companies like Google and Cisco, people routinely use video conferencing to avoid walking to buildings 10 minutes away.

Telepresence robots, which let a remote person wander around a building, go up to people and act more like they are really there are taking off and make more and more people decide even a 3 hour one-way train trip or plane trip is too much. This isn’t a certainty, but it would also be wrong to bet that many trips that take place today just won’t happen in the future.

Sprawl

Like it or not, in many areas, sprawl is increasing. You can’t legislate it away. While there are arguments on both sides as to how urban densities will change, it is again foolish to bet that sprawl won’t increase in many areas. More sprawl means even less value in downtown-to-downtown rail service, or even in big airports. Urban planners are now realizing that the “polycentric” city which has many “downtowns” is the probable future in California and many other areas.

That Technology Nobody Saw Coming

While it may seem facile to say it, it’s almost assured that some new technology we aren’t even considering today will arise by 2030 which has some big impact on medium distance transportation. How do you plan for the unexpected? The best way is to keep your platform as simple as possible, and delay decisions and implementations where you can. Do as much work with the knowledge of 2030 as you can, and do as little of your planning with the knowledge of 2012 as you can.

That’s the lesson of the internet and the principle known as the “stupid network.” The internet itself is extremely simple and has survived mostly unchanged from the 1980s while it has supported one of history’s greatest whirlwinds of innovation. That’s because of the simple design, which allowed innovation to take place at the edges, by small innovators. Simpler base technologies may seem inferior but are actually superior because they allow decisions and implementations to be delayed to a time when everything can be done faster and smarter. Big projects that don’t plan this way are doomed to failure.

None of these future technologies outlined here are certain to pan out as predicted — but it’s a very bad bet to assume none of them will. California planners and the CHSR authority need to do an analysis of the HSR operating in a world of 2030s technology and sprawl, not today’s.

A drone with a tele-doctor and defibrillator in 100 seconds?

There’s a lot of excitement about the potential of autonomous drones, be they nimble quadcopters or longer-range fixed wing or hybrid aircraft. A group of students from Singularity University, for example, has a project called MatterNet working to provide transportation infrastructure for light cargo in regions of Africa where roads wash out for half the year.

Closer to home, these drones are not yet legal for commercial use, while government agencies are using them secretly.

Here’s one useful idea: A small set of medical drones scattered around the city. Upon emergency call, they can fly, via a combination of autonomous navigation and remote-human-operated flying at the end, to any destination in the city within a couple of minutes. Call 911 and as soon as you say it’s a medical emergency the drone is on the way. When it gets there, the human operator lands it or even sends it in a balcony on tall buildings with balconies. Somebody has to carry it to the patient if they are far from the outside.

When it gets to the patient it has a camera and conferencing ability to a remote doctor can examine the patient and talk to people around the patient to ask them questions or give them instructions. It also could contain one of those “foolproof defibrillator” modules able to deal with many kinds of heart attacks. They are already in many buildings but this way they could be anywhere. It’s more useful than a taco.

The remote doctor could advise any medical staff who come, or give advice to the ambulance that’s on the way but not getting there for a few minutes. If a medicine that can be administered by a layperson is needed, there might be some in the drone but a second drone could be loaded and dispatched within a few minutes as well — that might take longer to fly but less time than an ambulance. You might not put any valuable medicines in the first drone to prevent people from summoning them just to steal them, though this might just happen for the valuable drone unless steps are taken to make that non-productive.

This should be combined with something I have felt is long overdue in the world of our mobile phones. People who are able to be on-call EMTs and doctors should have their phones updating their locations with a medical service while they are on call for such action. Then anybody with an emergency should be able to summon or get to the closest professional very quickly. (Of course there is no need to record this data after it changes, to avoid making a life-log of the doctor.) Nobody should ever have to ask “is there a doctor in the house?” 911 should be able to say, “There is a doctor 3 doors down, she’s been notified.” But the drone can always come, and bring a remote specialist if need be.

The other barrier to this is network dead zones. A map would need to be made of network dead zones and the drone would not fly into them, though it could fly through them. It would land just outside the dead zone and warn people not to carry it into one if the remote doctor’s services are needed.

Someday, the drone could contain a winner of the X-prize “Medical Tricorder” contest with sensors to diagnose all sorts of conditions, and it might even eventually be a robot able to administer emergency drugs — but the actual delivery and video feed is something we can do today.

Time for delivery companies to work weekends

This time of year I do a lot of online shopping, and my bell rings with many deliveries. But today and tomorrow, not Saturday. The post office comes Saturday but has announced it wants to stop doing that to save money. They do need to save money, but this is the wrong approach. I think the time has come for Saturday and Sunday delivery to be the norm for UPS, Fedex and the rest.

When I was young almost all retailers closed on Sunday and even had limited hours on Saturday. Banks never opened on the weekend either. But people soon realized that because the working public had the weekend off, the weekend was the right time for consumer services to be operating. The weekend days are the busiest days at most stores.

The shipping companies like Fedex and UPS started up for business to business, but online shopping has changed that. They now do a lot of delivery to residences, and not just at Christmas. But Thursday and Friday are these odd days in that business. An overnight package on Friday gets there 3 days later, not 1. (If you use the post office courier, you get Saturday delivery as part of the package, and the approximately 2 day Priority mail service is a huge win for things sent Thursday.) In many areas, the companies have offered Saturday and even Sunday delivery, but only as a high priced premium service. Strangely, the weekend also produces a gap in ground shipping times — the truck driving cross-country presumably pauses for 2 days.

We online shoppers shop 7 days a week and we want out stuff as soon as we can get it. I understand the desire to take the weekend off, but usually there are people ready to take these extra shifts. This will cost the delivery companies more as they will have to hire more workers to operate on the weekend. And they can’t just do it for ground (otherwise a 3 day package sent Friday arrives the same time as an overnight package.)

Update: I will point out that while online shipping is the David to the Goliath of brick & mortar, changing shipping to 7 days a week will mean a bunch more stuff gets bought online, and shipped, and will bring new revenue to the shipping companies. It’s just just a cost of hiring more people. It also makes use of infrastructure that sits idle 2 days a week.

This is particularly good for those who are always not hope to sign for packages that come during the work week. The trend is already starting. OnTrak, which has taken over a lot of the delivery from Amazon’s Nevada warehouse to Californians, does Saturday delivery, and it’s made me much more pleased with Amazon’s service. When Deliverbots arrive, this will be a no brainer.

What to do in high speed rail?

Last week, new studies came back on the California High Speed Rail project. They have raised the estimated cost to $99 billion, and dropped the ridership estimate to 36.8 million and $5.5 billion in annual revenue. Note that only around 20 million people currently fly the SF to LA corridor — they expect to not just capture most of those but large numbers of central valley trips.

Even at the earlier estimates the project was an obvious mistake, and there’s no way to financially justify spending $99 billion to pull in $5.3 billion/year even subbing zero in for the large operating cost. But for various political reasons involving getting federal money, some are still pushing for this project, and we may well build a short train to nowhere in the central valley just to get the federal bucks.

They’re planning there because the various cities in the populated areas have been fighting legal battles to block the train there, not wanting its disruption. Because the train can only stop if a very few places at the speed it wants to go, a lot of towns would end up having construction and noise and street blockage and not get a lot of use from the train.

The local opposition is a tough barrier, because the train ends up really only being useful where the people are. While I have doubts about how many people would ride the long haul, since few want to go from downtown SF to downtown LA, lots of people would ride a fast train in the urban areas. In particular, what nobody talks about is running the HSR primarily to the airport, and streamlining both security clearance and the connection with new technology. The only reason HSR is pushed as possibly competing with flights is because of the nightmare we have made of flying, where people have to get to airports 45 minutes ahead of even short-haul flights and take a fair bit of time to get out of airports on the other end and make it through traffic to their destinations. A fast train from a downtown to the airport where you clear security (and check bags) right on the train, and the train drops you right at the central gate areas post security would create an unbeatable trip from downtown anywhere to downtown anywhere.

For fast trains, the San Francisco to San Jose route is so short that a 250mph HSR could do the 48 mile trip between the towns in 12 minutes without stopping, call it 15 with the start and stop at each end. This opens up an interesting cost saving — you could build a single track, and have a train zip back and forth on it, and still provide service every 30 minutes. You could put a double-track section in the middle and have service every 15 minutes, with lots of safety interlocks of course. A single track requires less land, less of everything and could probably be built along easier routes, even highway medians in some cases. You could avoid turnaround time by having double track at the endpoints, so one train is leaving for opposite route the moment the other train arrives, giving each train quite a long turnaround — with double rolling stock.

Of course, having no stops is not that valuable because only a few people want to go from SJ to SF. People would want a stop at the airport as I have indicated, and at least one in Mountain View or Palo Alto. Each stop costs a bunch of time, and eventually the trip gets long enough that the single-track trick becomes less useful. For a while I’ve wondered if you could make trains that could dock, so that the main train runs non-stop and is able to shed cars which stop at local stops (not that hard) and to dock with cars coming from local stops (harder.) I proposed this 7 years ago near the start of this blog, and there are serious rail designers thinking along the same lines — see the video in that link.

In the Priestman Goode proposal, they have trains docking side to side. That seems much more challenging though it offers fast transfer. If you combine the two ideas, you would have two tracks — one for the nonstop trains and one for the docking shuttles which serve all the local stops. Indeed, if you could do this you could get rid of the old regular speed rail service running on existing track pairs because this would be superior in all ways except cost. My own proposals attempted to dock on a single track, which seems easier to me.

Robocars play a role in all this too. Even the HSR authority realizes they have a big problem, in that once people get quickly to an HSR station, they still have to get to their real destination. Using local transit may mean spending more time on a local bus than on the HSR. The mobility on demand of robocars is a great answer, and I’m pretty sure that with a 2030 forecast completion date (if they’re lucky) we’ll have robocars long before then. And the one thing cars can’t readily do is go very fast efficiently between cities.

The docking approach, should it work, has another advantage. The main train can take the best route (cheapest or shortest) without too much regard for where the stations are. People like stations in urban centers, but bringing the high speed train right through such areas (like Palo Alto) is hard and has caused the lawsuits. If the train goes through the industrial space along the Bay, and a spur goes into downtown for the shuttle that docks with it, you get a win all around.

Another approach that doesn’t require dock/undock works when you have a solid terminus like SF. You have 3 trains leave SF at the same time. The first one goes express to San Jose. The second goes express to Palo Alto and Mountain View and then switches to low speed tracks to go to Sunnyvale and Santa Clara. The third goes to SFO airport. Because SFO airport is also an origination point, it sends a train to SJ just before or after the one from SF, and another train to Mountain View right after that one. Mountain View to SJ service might be able to fit in or have to be local service. These sub-trains are just a few cars. This is not as energy efficient, though it can be if the trains are able to get close to one another and draft, sort of a virtual coupling without physical contact. You need perfect sync, and special long-spring collision bumpers in case the sync fails and they bump. The risk of higher-speed bumping must be prevented by failsafes that don’t even let the trains get on the same track until speed is matched close enough. This requires more than just a single track of course.

Paying drivers to leave the road

Congestion on the roads has a variety of sources. These include accidents of course, reductions in road capacity, irrational human driving behaviours and others, but most of all you get congestion when more cars are trying to use a road than it has capacity for.

That’s why the two main success stories in congestion today are metering lights and downtown congestion charging. Metering lights limit how fast cars can enter the highway, so that you don’t overload it and traffic flows smoothly. By waiting a bit at the metering light you get a fast ride once on the highway. Sometimes though, especially when the other factors like accidents come into play, things still gum up.

Now that more and more cars are connected (by virtue just of the smartphone the driver carries if nothing else) the potential will open up for something else in congestion — finding ways to encourage drivers to leave a congested road.  read more »

ITS vehicle to vehicle demo at ITS World Congress

I’m just back from the “ITS World Congress” an annual meeting of people working on “Intelligent Transportation Systems” which means all sorts of applications of computers and networking to transportation, particularly cars. A whole bunch of stuff gets covered there, including traffic monitoring and management, toll collection, transit operations etc. but what’s of interest to robocar enthusiasts is what goes into cars and streets. People started networking cars with systems like OnStar, now known in the generic sense as “telematics” but things have grown since then.

The big effort involves putting digital radios into cars. The radio system, known by names like 802.11p, WAVE and DSRC involves an 802.11 derived protocol in a new dedicated band at 5.9ghz. The goal is a protocol suitable for safety applications, with super-fast connections and reliable data. Once the radios in the car, the car will be able to use it to talk to other cars (known as V2V) or to infrastructure facilities such as traffic lights (known as V2I.) The initial planned figured that the V2I services would give you internet in your car, but the reality is that 4G cellular networks have taken over that part of the value chain.

Coming up with value for V2V is a tricky proposition. Since you can only talk to cars very close to you, it’s not a reliable way to talk with any particular car. Relaying through the wide area network is best for that unless you need lots of bandwidth or really low latency. There’s not much that needs lots of bandwidth, but safety applications do demand both low latency and a robust system that doesn’t depend on infrastructure.

The current approach to safety applications is to have equipped cars transmit status information. Formerly called a “here I am” this is a broadcast of location, direction, speed and signals like brake lights, turn signals etc. If somebody else’s car is transmitting that, your car can detect their presence, even if you can’t see them. This lets your car detect and warn about things like:

  • The car 2 or 3 in front of you, hidden by the truck in front of you, that has hit the brakes or stalled
  • People in your blind spot, or who are coming up on you really fast when your’re about to change lanes
  • Hidden cars coming up when you want to turn left, or want to pass on a rural highway
  • Cars about to run red lights or blow stop signs at an intersection you’re about to go through
  • Privacy is a big issue. The boxes change their ID every minute so you can’t track a car over a long distance unless you can follow it over every segment, but is that enough? They say a law is needed so the police don’t use the speed broadcast to ticket you, but will it stay that way?

It turns out that intersection collisions are a large fraction of crashes, so there’s a big win there, if you can do it. The problem is one of critical mass. Installed in just a few cars, such a system is extremely unlikely to provide aid. For things like blindspot detection, existing systems that use cameras or radars are far better because they see all cars, not just those with radios. Even with 10% penetration, there’s only a 1% chance any given collision could be prevented with the system, though it’s a 10% chance for the people who seek out the system. (Sadly, those who seek out fancy safety systems are probably less likely to be the ones blowing through red lights, and indeed another feature of the system — getting data from traffic lights — already can do a lot to stop an equipped car from going through a red light by mistake.)  read more »

Car users frustrated with their tech

The latest JD Power survey on car satisfaction has a very new complaint that has now the second most annoying item to new car owners namely problems with the voice recognition system in their hands-free interface. This is not too surprising, since voice recognition, especially in cars, is often dreadful. It also reveals that most new tech has lots of UI problems — not every product is the iPod, lauded from the start for its UI.

But one interesting realization in the study is that users have become frustrated at having too many devices with too many UIs. Their car (which now has a touchpad and lots of computer features) uses a different UI from their phone and computer and tablet and whatever. Even if the car has a superb UI, the problem is that it is different, something new to learn and remember.

One might fix this by having the same platform, be it iOS or Android on several of the devices, but that’s a tall order. Car vendors do not want to make a phone one one platform and tick off people used to the other platform.

The answer lies in something the car makers don’t like: Don’t put much of their own smarts in the car at all, and expect the user to slot their own mobile phone or tablet into the car. This might be done with something like Nokia’s “Terminal Mode” where the car’s screen and buttons can be taken over by the phone, or by not having a screen in the car at all, just a standard mounting place.

Some time ago I wrote that cars should stop coming with included radios as they used to 30 years ago, and let the slot in the dashboard where the radio and electronics go become a center for innovation. In particular innovation at the speed of consumer and mobile devices, not innovation at the speed of car companies. But there are too many pressures to stop this from happening. Car companies get to charge a lot for fancy radio and electronics systems in the cars, and they like this. And they like the control over the whole experience. But as they get more complaints they may realize that it’s not the right thing for them to be building. Especially not when the car (and the in-dash system) last for 10 to 15 years, while most consumer electronic devices are obsolete in 1-2 years.

There aren’t that many makes of cars, nor so many mobile platforms, so making custom apps for the car and the mobile platform isn’t that hard. In fact, I would expect you would see lots of competing aftermarket ones if they opened up the market to it. And open source ones too, built by fans of the particular cars.

Terminal mode or a standard mounting port for mobile phones in cars?

It’s very common to use mobile phones for driving activities today. Many people even put in cell phone holders in their cars when they want to use the phones as navigation systems as well as make calls over a bluetooth. There’s even evidence that dashboard mounting reduces the distracted driving phenomenon associated with phones in cars.

Nokia and others are pushing one alternative for the cars that have dashboard screens. This is called “Terminal Mode” and is a protocol so the phone can make use of the display, buttons and touchscreens in the car. Putting the smarts in the phone and making the dash be the dumb peripheral is the right idea, since people upgrade phones frequently and cars not nearly so much. The terminal mode interface can be wireless so the phone does not have to be plugged in, though of course most people like to recharge phones while driving.

Terminal mode will be great if it comes, but it would be good to also push for a standard port on dashboards for mounting mobile phones. Today, most mobile phone holders either stick to the windshield with a suction cup, or clamp onto the vents of the air conditioner. A small port or perhaps flip out lever arm would be handy if standardized on dashboards. The lever arm would offer a standard interface for connecting a specific holder for the specific device. In addition, the port would offer USB wiring so that the holder could offer it to the phone. This would offer power at the very least but could also do data for terminal mode and some interfacing with other elements of the car, including the stereo system, or the onboard-diagnostics bus. Access to other screens in the back (for playing video) and to superior antennas might make sense. While many phones use their USB port to be a peripheral to a PC, some have “USB to go” which allows a device to be either master or peripheral, allowing more interesting functions.

Even with terminal mode, there could be value in having two screens, and more buttons, though of course apps would have to be developed to understand that. However, one simple thing is that a phone could run two apps at once on two screens (or even two apps at once on the larger screen of the car) which would actually be pretty handy.

Another pedal-powered monorail: Skyride

Last year I wrote about an interesting but simple pedal powered monorail/PRT system called Shweeb which had won a prize/investment from Google. Recent announcements show they are not alone in this concept. Scott Olson, the original developer of the Rollerblade, has founded a company called Skyride Technologies to build their own version of a pedal powered suspended monorail.

You will find much that is similar between the two concepts, though they were developed independently. I will have to give Skyride the nod of picking names, though. Skyride offers both pedaling and a rowing-machine style interface, the latter aimed both at the disabled and those seeking a different kind of workout.

At present, the Skyride car is also open to the air, which has both advantages and disadvantages when it comes to cooling, drag, and exposure to the elements. Skyride does not also seem to offer the “bumper” system in the wheel cartridge which Shweeb claims will allow vehicles to safely hit one another and then push one another in trains.

Both are confined to prototype tracks for now, though the Schweeb one is an amusement ride that is open to the public. Both have plans to solve the most important problem in turning this into a real transportation system for campuses or urban areas, namely a switch that lets the vehicle smoothly and safely change tracks. Switching has always been an issue in monorails — not that it can’t be solved, but it’s just a little harder than changing lanes in a car. Rail systems sometimes put the switching in the track (that’s what regular heavy rail does) but that’s not very practical if you are going to have very frequent small vehicles. You want in-vehicle switching but with no risk of derailing.

While this concept is interesting, and even more fun if they can prove it works and then add some automation, I am not sure it will ever become a really big space. Still, having 2 companies will not doubt spur a bit more innovation.

My phone should know when I start a trip

Every day I get into my car and drive somewhere. My mobile phone has a lot of useful apps for travel, including maps with traffic and a lot more. And I am usually calling them up.

I believe that my phone should notice when I am driving off from somewhere, or about to, and automatically do some things for me. Of course, it could notice this if it ran the GPS all the time, but that’s expensive from a power standpoint, so there are other ways to identify this:

  • If the car has bluetooth, the phone usually associates with the car. That’s a dead giveaway, and can at least be a clue to start looking at the GPS.
  • Most of my haunts have wireless, and the phone associates with the wireless at my house and all the places I work. So it can notice when it disassociates and again start checking the GPS. To get smart, it might even notice the MAC addresses of wireless networks it can’t see inside the house, but which it does see outside or along my usual routes.
  • Of course moving out to the car involves jostling and walking in certain directions (it has a compass.)

Once it thinks it might be in the car, it should go to a mode where my “in the car” apps are easy to get to, in particular the live map of the location with the traffic displayed, or the screen for the nav system. Android has a “car mode” that tries to make it easy to access these apps, and it should enter that mode.

It should also now track me for a while to figure out which way I am going. Depending on which way I head and the time of day, it can probably guess which of my common routes I am going to take. For regular commuters, this should be a no-brainer. This is where I want it to be really smart: Instead of me having to call up the traffic, it should see that I am heading towards a given highway, and then check to see if there are traffic jams along my regular routes. If it sees one, Then it should beep to signal that, and if I turn it on, I should see that traffic jam. This way if I don’t hear it beep, I can feel comfortable that there is light traffic along the route I am taking. (Or that if there is traffic, it’s not traffic I can avoid with alternate routes.)

This is the way I want location based apps to work. I don’t want to have to transmit my location constantly to the cloud, and have the cloud figure out what to do at any given location. That’s privacy invading and uses up power and bandwidth. Instead the phone should have a daemon that detects location “events” that have been programmed into it, and then triggers programs when those events occur. Events include entering and leaving my house or places I work, driving certain roads and so on.

And yes, for tools like shopkick, they can even be entering stores I have registered. And as I blogged at the very beginning of this blog many years ago, we can even have an event for when we enter a store with a bad reputation. The phone can download a database of places and wireless and Bluetooth MACs that should trigger events, and as such the network doesn’t need to know my exact location to make things happen. But most importantly, I don’t want to have to know to ask if there is something important near me, I want the right important things to tell me when I get near them.

Needed: An international hand signal for "There's a problem with your car"

You’re driving down the road. You see another car on the road with you that has a problem. The lights are off and it’s dusk. There is something loose that may break off. There’s something left on the roof or the trunk is not closed — any number of things. How do you tell the driver that they need to stop and check? I’ve tried sometimes and they mostly think you are some sort of crazy, driving to close to them, waving at them, honking or shouting. Perhaps after a few people do it they figure it out.

We have a few signals. Oncoming cars flash lights on and off to warn you your lights are off. (Sometimes they are also warning of a speed trap.) High beams means, “I want to pass and you’re impeding the lane” and while many think that’s rude it’s better than tailgating.

We need a signal for “There is a problem with your car, you should check it out.” This signal should be taught in driving schools, and even be on the driving test. A publicity campaign should educate existing drivers.

One proposal that might make sense is the SCUBA signal for “I have a problem.” This is holding your hand flat, palm down, and wiggling it side to side (ie. rotating your wrist.) Then you point to the source of the problem, like your regulator or whatever. (There are specific SCUBA signals for well known problems, like being low on air, nitrogen narcosis etc.)

For this signal you would waggle the hand and then point at the place on the other person’s car. To those untrained, the signal often mean’s “dicey” or uncertain. Shaking of the head could also strengthen the signal.

Anybody have a better signal to propose?

I'm loving the Shweeb concept

There was a bit of a stir when Google last week announced that one of the winners of their 10^100 contest would be Shweeb, a pedal-powered monorail from New Zealand that has elements of PRT. Google will invest $1M in Shweeb to help them build a small system, and if it makes any money on the investment, that will go into transportation related charities.

While I had a preference that Google fund a virtual world for developing and racing robocars I have come to love a number of elements about Shweeb, though it’s not robocars and the PRT community seems to not think it’s PRT. I think it is PRT, in that it’s personal, public and, according to the company, relatively rapid through the use of offline stations and non-stop point to point trips. PRT is an idea from the sixties that makes sense but has tried for almost 50 years to get transit planners to believe in it and build it. A micro-PRT has opened as a Heathrow parking shuttle, but in general transit administrators simply aren’t early adopters. They don’t innovate.

What impresses me about Shweeb is its tremendous simplicity. While it’s unlikely to replace our cars or transit systems, it is simple enough that it can actually be built. Once built, it can serve as a testbed for many of PRT’s concepts, and go through incremental improvements.  read more »

Electric car vendors: bundle in short-term gasoline car rentals, with charging

Looking at new electric cars like the Nissan Leaf, we see that to keep costs down, cars with a range of 100 miles are on offer. For certain city cars, particularly in 2-car families, this should be just fine. In my particular situation, being just under 50 miles from San Francisco, this won’t work. It’s much too close to the edge, and trips there would require a full charge, and visits to other stops during the trip or finding parking with charging. Other people are resisting the electrics for lesser reasons, since if you ever do exceed the range it’s probably an 8 hour wait.

An alternative is a serial hybrid like the Chevy Volt. This has 40 miles range but a gasoline generator to provide the rest of the range and no “range anxiety.” Good, but more expensive and harder to maintain because electric cars are much simpler than gasoline cars.

Here’s an alternative: The electric car vendor should cut a deal with car rental services like ZipCar and Hertz. If you’re ever on a round trip where there is range anxiety, tell the car. It will use its computer and internal data connection to locate a suitable rental location that is along your route and has a car for you. It will make all appropriate reservations. Upon arrival, your electric car would transmit a signal to the rental car so that it flashes its lights to guide you and unlocks its doors for you. (The hourly car rental companies all have systems already where a transmitter unlocks the car for you.)

In many cases you would then pause, pull the rental out of its spot and put your electric in that spot. With more advanced robocar technologies, the rental would actually pull out of its spot for you. Zipcar has reserved spots for its vehicles and normally it makes no sense for the renter to have just pulled up in a car and need the spot, but it should work just fine. At Hertz or similar companies another open spot may be available.

Then off you go in your gasoline car. To make things as easy as possible, the negotiated contract should include refill of gasoline at a fair market price rather than the insane inflated price that car rental houses charge. Later come back and swap again.  read more »

The radio will be a major innovation center in cars, near-term

I’ve been predicting a great deal of innovation in cars with the arrival of robocars and other automatic driving technologies. But there’s a lot of other computerization and new electronics that will be making its way into cars, and to make that happen, we need to make the car into a platform for innovation, rather than something bought as a walled garden from the car vendor.

In the old days, it was fairly common to get a car without a radio, and to buy the radio of your choice. This happened even in higher end cars. However, the advantages in sound quality and dash integration from a factory-installed radio started to win out, especially with horizontal market Japanese companies who were both good at cars and good at radios.

For real innovation, you want a platform, where aftermarket companies come in and compete. And you want early adopters to be able to replace what they buy whenever they get the whim. We replace our computers and phones far more frequently than our cars and the radios inside them.

To facilitate this, I think the car’s radio and “occupant computer” should be merged, but split into three parts:

  1. The speakers and power amplifier, which will probably last the life of the car, and be driven with some standard interface such as 7.1 digital audio over optical fiber.
  2. The “guts” which probably live in the trunk or somewhere else not space constrained, and connect to the other parts
  3. The “interface” which consists of the dashboard panel and screen, with controls, and any other controls and screens, all wired with a network to the guts.

Ideally the hookup between the interface and the guts is a standardized protocol. I think USB 3.0 can handle it and has the bandwidth to display screens on the dashboard, and on the back of the headrests for rear passenger video. Though if you want to imagine an HDTV for the passengers, its possible that we would add a video protocol (like HDMI) to the USB. But otherwise USB is general enough for everything else that will connect to the guts. USB’s main flaw is its master-slave approach, which means the guts needs to be both a master, for control of various things in the car, and a slave, for when you want to plug your laptop into the car and control elements in the car — and the radio itself.

Of course there should be USB jacks scattered around the car to plug in devices like phones and memory sticks and music players, as well as to power devices up on the dash, down in the armrests, in the trunk, under the hood, at the mirror and right behind the grille.

Finally there need to be some antenna wires. That’s harder to standardize but you can be we need antennas for AM/FM/TV, satellite radio, GPS, cellular bands, and various 802.11 protocols including the new 802.11p. In some cases, however, the right solution is just to run USB 3.0 to places an antenna might go, and then have a receiver or tranceiver with integrated antenna which mounts there. A more general solution is best.

This architecture lets us replace things with the newest and latest stuff, and lets us support new radio protocols which appear. It lets us replace the guts if we have to, and replace the interface panels, or customize them readily to particular cars.  read more »

Transit energy chart updated from latest DoE book

Back in 2008 I wrote a controversial article about whether green transit was a myth in the USA. Today I updated the main chart in that article based on new releases of the Department of Energy Transportation Energy Fact Book 2009 edition. The car and SUV numbers have stayed roughly the same (at about 3500 BTUs/passenger-mile for the average car under average passenger load.)

What’s new?

  • Numbers for buses are now worse at 4300. Source data predates the $4/gallon gas crisis, which probably temporarily improved it.
  • Light (capacity) rail numbers are significantly worse — reason unknown. San Jose’s Light rail shows modest improvement to 5300 but the overall average reported at 7600 is more than twice the energy of cars!
  • Some light rail systems (See Figure 2.3 in Chapter 2) show ridiculously high numbers. Galveston, Texas shows a light rail that takes 8 times as much energy per passenger as the average SUV. Anybody ridden it and care to explain why its ridership is so low?
  • Heavy rail numbers also worsen.
  • Strangely, average rail numbers stay the same. This may indicate an error in the data or a change of methodology, because while Amtrak and commuter rail are mildly better than the average, it’s not enough to reconcile the new average numbers for light and heavy rail with the rail average.
  • I’ve made a note that the electric trike figure is based on today’s best models. Average electric scooters are still very, very good but only half as good as this.
  • I’ve added a figure I found for the East Japan railway system. As expected, this number is very good, twice as good as cars, but suggests an upper bound, as the Japanese are among the best at trains.
  • I removed the oil-fueled-agriculture number for cyclists, as that caused more confusion than it was worth.
  • There is no trolley bus number this year, so I have put a note on the old one.
  • It’s not on the chart, but I am looking into high speed rail. Germany’s ICE reports a number around 1200 BTU/PM. The California HSR project claims they are going to do as well as the German system, which I am skeptical of, since it requires a passenger load of 100M/year, when currently less than 25M fly these routes.

Border Travel in an underpants bomber world

I just landed on a flight from Toronto to San Francisco. If you were inside the USA you may not have heard about the various crazy rules applied to travel to the USA, or at least not experienced them. While we were away the rules changed every day, and perhaps every hour.

Toronto was hit the hardest because it has the most flights to the USA of any airport in the world (with a few other Canadian airports not far behind.) Due to the busy border, you clear U.S. customs and immigration through their satellite office in Toronto, so your plane lands you at domestic gates in the USA, making connections far easier.

The USA started insisting on intimate pat-downs on all passengers and complete hand screening of all carry-ons. For a while there was even a regulation that passengers would have to sit in their seats with nothing on their laps (not blankets, not books, not computers) for the last hour of the flight. That got reverted to “pilot’s discretion” and in our case there was no talk of this.

The heavy search requirements brought Toronto’s heavy to-USA traffic to a standstill. Even with extra mounties pitching in, there was now way to get all those people through the terminal, so the CATSA brought in a near-ban on carry-ons. You could only carry on items from a short list. Notable things not on the list (ie. banned) included books, kid’s toys, lenses and various items people bring on not because they need them in flight, but because they are essential to their trip, or are fragile.

After a few days of reduced carry-ons, they got the processing down, as long as you got there 3 hours in advance, sometimes more. A real burden on 1 hour flights to New York, Boston or Washington. Still a burden on my 5 hour flight to SFO, since that was at 7am, meaning getting to the airport at 4am, (1am Pacific Time, about the time I would get to bed.)

The process included the fairly standard x-ray (with agents making various exceptions for people, generally allowing books that could be paged through and even some small knapsacks) with pat down only if you set off the alarm. Then, shortly after you started walking down the row of gates was a 2nd checkpoint. There you got a serious patdown that might remind you of a massage, and a complete hand inspection of everything in your bags. (I suggest they should let you pay extra for a real massage, which also of course detects anything on your body.) Many checks of ID and boarding pass and you are on your way.

There are many disturbing things about the reaction to the underpants bomber but a few stand out.

  • It is certain that the TSA and all other major agencies knew about the risk of somebody strapping explosives to their legs and taking them through the magnetometer. So a plan should have been in place long ago about what to do about it, and how to react at the first public incident.
  • In spite of this the agencies are out running around like chickens with their heads cut off, changing plans every day, no sign of forethought. Are they just testing the public to see what they will tolerate?
  • Lots of talk of thz scanners to see everybody naked. Is this a way to get those accepted, after people complained?
  • For Toronto, and most of the Canadian airports, a bad guy can quite readily drive just 90 minutes and go to another airport like Buffalo and get no special screening! While the public does not like this extra trek, it’s no burden to the terrorist to do this. Only the innocent are punished.
  • You could still smuggle your stuff inside a laptop, or a body cavity or several other places I noticed.
  • Keep this up and people will stop flying, and they will definitely go to airports like Buffalo.
  • As I have suggested before, appointments for security inspections are one answer to the 3 hour early arrival.
  • For me the worst thing was packing lenses in checked bag. I had to improvise protection for them. When such a rule is put in place by surprise over Christmas, you have to expect a lot of people brought stuff that they needed to carry on on the way back, even if they would not plan a new trip today expecting to carry on their fragiles.

With some irony, all this came after a lunch with Peter Watts. If you didn’t hear, Peter was crossing back into Canada at Port Huron/Sarnia and got pull over for exit inspection leaving the USA. Because he wasn’t a complete little sheep, he reports he was beaten up by the border patrol and now is charged with assaulting an officer. I really doubt he did those things, but the most disturbing thing are those who comment on the story saying it’s his fault for not being subservient enough. I understand the reasons for letting police do their jobs, but when you are just inspecting people driving out of the country, with no special reason to believe they are criminals or worthy of above average suspicion or anything but the presumption of innocence we are all owed, then there should be standards, and better defined rights for the subject of the inspections. If a person is not a known threat, why should they not get to ask questions about what is being done to them and their vehicle? Yes, one time in many thousands, an actual nasty criminal might do something odd and need to be set upon with force. It’s one of the risks people take doing an armed policing job. It can happen anywhere, any time. But must the people give up their rights and be complete sheep because of it?

Can’t we have a system where different situations suggest different levels of police control? Where the police, while they may have the power to give you orders and you have to obey without much chance to question, get in trouble if they abuse that power in a non-hostile situation? Where they have a simple way of explaining that they think the situation has escalated, and a way to declare it that we are taught in school to understand? So if the copy says, “I’m escalation — get on the ground now” you have to get on the ground, but the cop has to justify later why he escalated. Simply being a citizen who is mindful of his rights doesn’t seem much grounds for that.

911 should be able to stop a train

It was over 5 years ago that I blogged about a robot that would travel in front of a train to spot cars stuck on the tracks in time to stop.

I recently read a local story about an RV that was demolished while stuck on the tracks here. The couple had time to talk to 911, who told them to get out, and it’s not clear from the story but it seems like a moderate amount of time may have passed (a couple of minutes) before their RV was smashed.

Here’s what should happen, and perhaps it does happen in some places:

  1. The 911 service should receive GPS and cell tower location on the caller. The moment the caller indicates they are stuck on the tracks, the 911 operator should push a button which figures out which tracks it might be and which trains might be approaching that crossing.
  2. Ideally trains are reporting their location with GPS as some do, but schedules can be used, or all trains anywhere near the area can be alerted.
  3. Signal lights close to the crossing should immediately go red, and cell phones of operators on the relevant trains should be called, and the computer or 911 operator can indicate which crossing is blocked. If the engineer is approaching that crossing they can emergency brake.

This can be enhanced a few ways:

  • Each crossing can have a big sign, “If stuck, get out of vehicle immediately, clear track (show direction) and call 911, and give this crossing number NNN.” The crossing number would work even if GPS and cell towers don’t locate the crossing.
  • Alternately, there could be a 10 digit phone number, different for each crossing. There is, however, some risk of abuse and false reports. You don’t want a war dialing telemarketer to stop trains. An operator may still need to confirm.
  • As noted, the sign should try to tell people to clear to the area slightly “upstream” (ie. towards the oncoming train, but not on the tracks, obviously.) That’s because when the train hits the car it throws it sideways and forward, never backwards along the path the train came from.
  • If you don’t see or hear a train, it makes slight sense to get out and call while walking so the call comes sooner. If you can see the train they can see you and it’s probably too late anyway. But human safety is more important.
  • The trains may have another way to reach the engineer, such as a private radio system, but just having a cell phone on each train (plus knowing trains staff personal cell phones and calling all of them) seems like a quick and easy solution. The cell in the train can have a very loud and flashing ringer, especially if it’s an emergency call.

It takes a long time to stop a train, but I bet most vehicles that get stuck on the tracks are stuck minutes before the train comes.

Can we stop electric cars from playing music for safety?

I struck a nerve several years ago when I blogged about the horrible beep-beep noise made by heavy equipment when it backs up. Eventually a British company came up with a solution: a pulsed burst of white noise which is very evident when you are near the backing up vehicle but which disperses quickly so it doesn’t travel and annoy people a mile away as the beeps do.

Now I am seeing more and more suggestions that electric cars, which run quite silently when slow, make some noise for safety. This is fine, but there are also suggestions that there will be music and vanity noises, like ringtones or “cartones.” I can certainly see why this would appeal to people. (Already many think that their car is the place to play mind-numbing bass to announce musical taste to all others on the street.) There are even proposed laws.

While the cartones would be quieter than the backup beep or the heavy bass, I really fear that people will overdo what they think is the purpose — being attention grabbing. They will want to distract, and that will create a cacophony on the roads. It’s hard to make sounds that are meant to be attention grabbing (or vanity oriented) not travel beyond the range that you need them for safety.

I don’t want to imagine what it might be like living as I do with a 3-way stop outside my window, with each car singing a different tune or strange noise every time it slows down and starts up again. Who will want to live near intersections or parking lots?

I have a few proposals:

  1. Like the beep-beep solution, use white noise that just doesn’t travel very far, but is easily noticed when close.
  2. Use natural sounds, like waves crashing, birds chirping, wind blowing. We are tuned to hear those sounds in an otherwise silent environment, but our brains also can easily ignore them in background form.
  3. Do indeed tune the volume based on ambient noise. This is suggested in the O’Reilly article linked above. They propose it to be loud enough. It should also be quiet enough.
  4. Don’t do it at a speed where the tires and wind and electric motors are making enough noise already.
  5. As robocar sensors become more common, such as LIDAR and radar, only make the noise when there are people who might come in contact with the vehicle. Otherwise, be silent.
  6. Since robocars will not hit people in any normal operation, even people who don’t know they are there, such vehicles need not make any noise. HOwever, if they see a human or anything else on a collision course, let them make a more loud and useful noise that really gets attention, like a burst of white or pink noise, or even a horn if they ignore that. Start quiet, get louder if it is not reacted to in a human reaction time.

Let’s not give up on this opportunity to return peace to our public spaces as electric cars and robocars become popular.

RV daisy chain power grid

After every RV trip (I’m back from Burning Man) I think of more I want RVs to do. This year, as we have for many years, we built a power distribution system with a master generator rather than having each RV run its own noisy, smelly and inefficient generator. However, this is expensive and a lot of work for a small group, it is cheap and a lot of work for a larger group.

There’s been a revolution in small generator design of late thanks to the declining cost of inverters and other power conversion. A modern quality generator feeds the output of its windings to circuits to step up and step down the voltage to produce the required power. The output power is cleaner and more stable, and the generator is spun at different RPMs based on the power load, making it quieter and more efficient. With many models, you can also combine the internal output of two generators to produce a higher power generator.

RVs have come with expensive old-style generators that are quieter than cheap ones, and which produce better power, but today they are moving to inverter generators. With an inverter generator, it’s also possible to draw on the RV batteries for power surges (such as starting an AC or microwave) beyond what the generator can do.

I’m interested in the potential for smarter power, so what I would like to see is a way for a group of RVs with new generation power systems to plug together. In this way, they could all make use of the power in the other vehicles, and in most cases only a fraction of the generators would need to be running to provide power to all. (For example, at night, only one generator could power a whole cluster. In the day, with ACs running, several would need to run, but it would be very unlikely to have to run all, or even 75% of them.)  read more »

Syndicate content