You are here

Blogs

New NHTSA Robocar regulations are a major, but positive, reversal

NHTSA released their latest draft robocar regulations just a week after the U.S. House passed a new regulatory regime and the senate started working on its own. The proposed regulations preempt state regulation of vehicle design, and allow companies to apply for high volume exemptions from the standards that exist for human-driven cars.

It's clear that the new approach will be quite different from the Obama-era one, much more hands-off. There are not a lot of things to like about the Trump administration but this could be one of them. The prior regulations reached 116 pages with much detail, though they were mostly listed as "voluntary." I wrote a long critique of the regulations in a 4 part series which can be found in my NHTSA tag. They seem to have paid attention to that commentary and the similar commentary of others.

At 26 pages, the new report is much more modest, and actually says very little. Indeed, I could sum it up as follows:

  • Do the stuff you're already doing
  • Pay attention to where and when your car can drive and document that
  • Document your processes internally and for the public
  • Go to the existing standards bodies (SAE, ISO etc.) for guidance
  • Create a standard data format for your incident logs
  • Don't forget all the work on crash avoidance, survival and post-crash safety in modern cars that we worked very hard on
  • Plans for how states and the feds will work together on regulating this

Goals vs. Approaches

The document does a better job at understanding the difference between goals -- public goods that it is the government's role to promote -- and approaches to those goals, which should be entirely the province of industry.

The new document is much more explicit that the 12 "safety design elements" are voluntary. I continue to believe that there is a risk they may not be truly voluntary, as there will be great pressure to conform with them, and possible increased liability for those who don't, but the new document tries to avoid that, and its requests are much milder.

The document understands the important realization that developers in this space will be creating new paths to safety and establishing new and different concepts of best practices. Existing standards have value, but they can at best encode conventional wisdom. Robocars will not be created using conventional wisdom. The new document takes the approach of more likely recommending that the existing standards be considered, which is a reasonable plan.

A lightweight regulatory philosophy

My own analysis is guided by a lightweight regulatory approach which has been the norm until now. The government's role is to determine important public goals and interests, and to use regulations and enforcement when, and only when, it becomes clear that industry can't be trusted to meet these goals on its own.

In particular, the government should very rarely regulate how something should be done, and focus instead on what needs to happen as the end result, and why. In the past, all automotive safety technologies were developed by vendors and deployed, sometimes for decades, before they were regulated. When they were regulated, it was more along the lines of "All cars should now have anti-lock brakes." Only with the more mature technologies have the regulations had to go into detail on how to build them.

Worthwhile public goals include safety, of course, and the promotion of innovation. We want to encourage both competition and cooperation in the right places. We want to protect consumer rights and privacy. (The prior regulations proposed a mandatory sharing of incident data which is watered down greatly in these new regulations.)

Topic: 
Tags: 

NTSB Tesla Crash report (New NHTSA regs to come)

The NTSB (National Transportation Safety Board) has released a preliminary report on the fatal Tesla crash with the full report expected later this week. The report is much less favourable to autopilots than their earlier evaluation.

Topic: 
Tags: 

Planning for hurricanes and other disasters with robocars

How will robocars fare in a disaster, like Harvey in Houston, Irma, or the tsunamis in Japan or Indonesia, or a big Earthquake, or a fire, or 9/11, or a war?

These are very complex questions, and certainly most teams developing cars have not spent a lot of time on solutions to them at present. Indeed, I expect that these will not be solved issues until after the first significant pilot projects are deployed, because as long as robocars are a small fraction of the car population, they will not have that much effect on how things go. Some people who have given up car ownership for robocars -- not that many in the early days -- will possibly find themselves hunting for transportation the way other people who don't own cars do today.

It's a different story when, perhaps a decade from now, we get significant numbers of people who don't own cars and rely on robocar transportation. That means people who don't have any cars, not the larger number of people who have dropped from 2 cars to 1 thanks to robocar services.

I addressed a few of these questions before regarding Tsunamis and Earthquakes.

A few key questions should be addressed:

  1. How will the car fleets deal with massively increased demand during evacuations and flight during an emergency?
  2. How will the cars deal with shutdown and overload of the mobile data networks, if it happens?
  3. How will cars deal with things like floods, storms, earthquakes and more which block roads or make travel unsafe on certain roads?

Most of these issues revolve around fleets. Privately owned robocars will tend to have steering wheels and be usable as regular cars, and so only improve the situation. If they encounter unsafe roads, they will ask their passengers for guidance, or full driving. (However, in a few decades, their passengers may no longer be very capable at driving but the car will handle the hard parts and leave them just to provide video-game style directions.)

Increased demand

An immediately positive thing is the potential ability for private robocars to, once they have taken their owners to safety, drive back into the evacuation zone as temporary fleet cars, and fetch other people, starting with those selected by the car's owner, but also members of the public needing assistance. This should dramatically increase the ability of the car fleet to get people moved.

Nonetheless, it is often noted that in a robocar taxi world, there don't need to be nearly as many cars in a city as we have today. With ideal efficiency, there would be exactly enough seats to handle the annual peak, but few more. We might drop to just 1/4 of the cars, and we might also have many of them be only 1 or 2 seater cars. There will be far fewer SUVs, pickup trucks, minivans and other large cars, because we don't really need nearly as many as we have today.

Topic: 

Talk Thursday in Silicon Valley: Everything you know on Robocars is wrong

For those in Silicon Valley, I will be giving a talk at the monthly autonomous vehicle enthusiast meetup. Some time ago I did my general talk, but this one will get into the meat on some of the big myths and issues. With luck we'll get some good debate going.

Topic: 

Private Big Brothers are arriving

For many decades I've had an ongoing debate with my friend David Brin over the ideas in his book The Transparent Society where he ponders what happens when cameras and surveillance technology become so cheap it's impossible to stop them from being everywhere.

Topic: 

Photo gallery from 2017 total solar eclipse

I was just outside Weiser Idaho, a small town on the Snake river, for the 2017 Eclipse, which was an excellent, if short, spectacle which reawakened U.S. interests in total eclipses. They are, as I wrote earlier, the most spectacular natural phenomenon you can see on the Earth, but due to their random pattern it's been a long time since one has covered so much of the world's richest country.

For me, it was my sixth total eclipse, but the first I could drive to. I began this journey in Mexico in 1991, with the super-eclipse of that year, which also was the last to visit the United States (it was visible on the big island of Hawai`i.) Since then I have flown around the world to the Curacao area, to the Black Sea, to the Marshall Islands (more photos) and French Polynesia to see other total eclipses. And I will continue to do so starting with 2 years from now in Argentina.

See the gallery

I recommend before you read that you enjoy my Gallery of 2017 Eclipse Photos in HD resolution. When going through them I recommend you click the "i" button so you can read the descriptions; they do not show in the slide show.

HDR from main camera

Why it's impossible (today) to photograph

I did not photograph my first eclipse (nor should anybody) but every photographer, seeing such a spectacle, hopes to capture it. We can't, because in addition to being the most spectacular natural event, it's also the one with the greatest dynamic range. In one small field you have brilliant jets of fire coming off the sun, its hot inner atmosphere, its giant glowing outer atmosphere and a dimly lit dark sky in which you can see stars. And then there is the unlit side of the moon which appears to be the blackest thing you have ever seen. While you can capture all these light values with a big bracket, no display device can come close to showing that 24 stop range. Only the human eye and visual system can perceive it.

Some day though, they will make reasonable display devices that can do this, but even then it will be tough. For the eclipse covers just a few degrees of sky, but in reality it's a full 360 experience, with eerie light in all directions and the temporary light of twilight in every direction. Still, we try.

In the future, when there is a retinal resolution VR headset with 24 bits of HDR light level ability, we might be able to show people an eclipse without going to one. Though you should still go.

Moment of 3rd contact

That's why these photographs are so different. Every exposure reveals a different aspect of the eclipse. Short exposures show the prominences and the "chromosphere" -- the inner atmosphere of the sun visible only at the start and end of the eclipse. Longer exposures reveal more of the giant corona. The fingers of the outer corona involve 2 or 4 second exposures! The most interesting parts happen at 2nd and 3rd contact (the start and end) and also have many aspects. About 1/60th of a second shows the amazing diamond ring by letting the tiny sliver of sun blow out the sensor to make the diamond, as it does to the eye.

Time to rename the partial eclipse

One thing that saddens and frustrates me is that all of this is only visible in a band less than 100 miles wide where the eclipse is total. Outside that, for thousands of miles, one can see (with eye protection) a "partial eclipse." They both get called an eclipse but the difference is night and day. Yet I think the naming makes people not understand the difference. They think a "90% partial eclipse" is perhaps 90% as interesting as a total eclipse. Nothing could be more wrong. There are really three different things:

  1. The total eclipse, the most amazing thing you will ever see.
  2. The >98% partial eclipse (and annular eclipse) which are definitely an interesting event, but still just a tiny shadow of what a total eclipse is.
  3. The ordinary partial eclipse, which is a fun and educational curiosity.

I constantly meet people who think they saw "the eclipse" when to me and all others who have seen one, only the total eclipse is the eclipse. While the 98% partial is interesting, nobody should ever see that, because if you are that close to the band of totality, you would be nuts not to make the effort to go that extra distance. In a total eclipse, you see all that the partial has to offer, and even a few partial effects not seen except at 99.9%

A wider angle HDR with deep corona

As such, I propose we rename the partial eclipse, calling it something like a "grazing transit of the moon." An eclipse technically is a transit of the moon over the sun, but my main goal is to use a different term for the partial and total so that people don't get confused. To tell people in the partial zone "you saw a transit, hope it was interesting" while telling people in the total zone, "You saw a solar eclipse, wasn't that the most amazing thing you've ever seen?"

Automating the photography

This was the first eclipse I have ever driven to, and because of that, I went a bit overboard, able to bring all sorts of gear. I had to stop myself and scale back, but I still brought 2 telescopes, 4 cameras, one long lens, 5 tripods and more.

Topic: 
Tags: 

Whoops, UA you could sure do a lot better with long delays and cancels

Last night, as they were towing our plane from the gate in Miami there was a very unusual bump -- turns out they put the tow bar on wrong and damaged the landing gear. It became clear in time that we would not fly that night (FA timeout loomed.) I've seen this a lot, so I was on the phone immediately to book another flight, but I would still need a hotel voucher for the night, as would most other folks on the flight, even if they took the same flight the next day after the repair.

Topic: 

E-mail is more secure than we think, we should use it

E-mail is facing a decline. This is something I lament, and I plan to write more about that general problem, but today I want to point out something that is true, but usually not recognized. Namely that E-mail today is often secure in transit, and we can make better use of that and improve it.

The right way to secure any messaging service is end-to-end. That means that only the endpoints -- ie. your mail client -- have the keys and encrypt or decrypt the message. It's impossible, if the crypto works, for anybody along the path, including the operators of the mail servers as well as the pipes, to decode anything but the target address of your message.

We could have built an end-to-end secure E-mail system. I even proposed just how to do it over a decade ago and I still think we should do what I proposed and more. But we didn't.

Along the way, though, we have mostly secured the individual links an E-mail follows. Most mail servers use encrypted SMTP over TLS when exchanging mail. The major web-mail programs like Gmail use encrypted HTTPS web sessions for reading it. The IMAP and POP servers generally support encrypted connections with clients. My own server supports only IMAPS and never IMAP or POP, and there are others like that.

What this means is that if I send a message to you on Gmail, while my SMTP proxy and Google can read that message, nobody tapping the wire can. Governments and possibly attackers can get into those servers and read that E-mail, but it's not an easy thing to do. This is not perfect, but it's actually pretty useful, and could be more useful.

Don't feed the radical right trolls by counter-protesting them

We're all shocked at the idea of a growing neo-Nazi movement, at the horrible attack in Virginia and the lack of condemnation by the President. It's making us forget that the neo-Nazi radical right are trolls with many parallels to online trolls. And the only thing to do is not to feed the trolls, and definitely don't attack the civil rights that they make use of.

A protest march has 3 main functions:

Your eclipse guide (with the things not in many eclipse guides)

I will be heading to western Idaho this weekend to watch my sixth total Eclipse. That makes me a mid-grade eclipse chaser, so let me tell you some important things you need to know, which are not in some of the other eclipse guides out there. For good general sites look at places like NASA's Eclipse Guide which has nice maps or this map.

Totality is everything

The difference between a total solar eclipse and a partial one -- even a 98% partial one -- is literally night and day. It's like the difference between sex and holding hands. They are really two different things with a similar sounding name. And a lunar eclipse is again something vastly different. This does not mean a high-partial eclipse is not an interesting thing, but the total eclipse is by far the most spectacular natural phenomenon visible on this planet. Beyond the Grand Canyon, Yosemite, Norway, etc. So if you can get to totality, get there. Do not think you are seeing the eclipse if you don't get into the zone of totality.

People debate about how total it should be

Many people seek to get close to the centerline of the eclipse. This provides the longest eclipse for your area. You will only lose a modest number of seconds if you are within 15 miles of the centerline, so you don't have to get exactly there, and in fact it may be too crowded there.

On the other hand there are those who deliberately get close to the edge, giving up 30-40% of their eclipse time in order to see more "edge effects." Near the edge, the edge effects are longer and a bit more spectacular. In particular the diamond ring will be a fair bit longer, and you may see more prominences and chromosphere for longer. If this is your first eclipse, I am not sure you want to get too close to the edge. But try any of the map web sites that will tell you your duration, and get somewhere that has within 30-40 seconds of the centerline time.

You look at the total eclipse with zero eye protection

You've been hearing endless talk about eclipse glasses and how well made they are. Eclipse glasses are only for the boring partial phase. They give you a way to track the progress of the moon while waiting for the main event. Once totality is over, everybody packs up and does not even bother to watch the 2nd half of the partial eclipse, that's how boring the partial part is.

But don't be one of those people who, told about the danger of eclipses, does not watch totality with your bare eyes. In fact, use binoculars in addition to your naked eyes, and perhaps a short look through a telescope -- but not during the diamond rings or any partial phase.

Update: There is a nice large sunspot group that should still be there on Eclipse day, making the partial phase more interesting to those with good eyesight.

In totality you are looking not at the sun, but its amazing atmosphere -- the "corona" -- full of streamers, and many times the size of the sun or moon. You may also see jets of fire coming off the sun, and at the start and end of totality you will see the hot red inner atmosphere of the sun, known as the chromosphere.

If you are crazy enough to be outside the total zone but close to it, you still can't look with your bare eyes at any part of the eclipse.

There are some cool things in a 99% partial eclipse (which you see just before and after totality.)

An eclipse is most glorious in the sky but a lot of other things happen around it. As it gets very close to total you will see the nature of the sunlight change and become quite eerie. Shadows of trees will turn into collections of crescents. About 20-60 seconds before and after totality, if you have a white sheet on the ground, you will see ripples of light waving, like on the bottom of a giant swimming pool. And the shadow. You will see it approach. If you are up on a mountain or in a plane this will be more obvious. It is going at 1,000 to 2,000 miles per hour.

Topic: 
Tags: 

Many different approaches to Robocar Mapping

Almost all robocars use maps to drive. Not the basic maps you find in your phone navigation app, but more detailed maps that help them understand where they are on the road, and where they should go. These maps will include full details of all lane geometries, positions and meaning of all road signs and traffic signals, and also details like the texture of the road or the 3-D shape of objects around it. They may also include potholes, parking spaces and more.

The maps perform two functions. By holding a representation of the road texture or surrounding 3D objects, they let the car figure out exactly where it is on the map without much use of GPS. A car scans the world around it, and looks in the maps to find a location that matches that scan. GPS and other tools help it not have to search the whole world, making this quick and easy.

Google, for example, uses a 2D map of the texture of the road as seen by LIDAR. (The use of LIDAR means the image is the same night and day.) In this map you see the location of things like curbs and lane markers but also all the defects in those lane markers and the road surface itself. Every crack and repair is visible. Just as you, a human being, will know where you are by recognizing things around you, a robocar does the same thing.

Some providers measure things about the 3D world around them. By noting where poles, signs, trees, curbs, buildings and more are, you can also figure out where you are. Road texture is very accurate but fails if the road is covered with fresh snow. (3D objects also change shape in heavy snow.)

Once you find out where you are (the problem called "localization") you want a map to tell you where the lanes are so you can drive them. That's a more traditional computer map, though much more detailed than the typical navigation app map.

Some teams hope to get a car to drive without a map. That is possible for simpler tasks like following a road edge or a lane. There you just look for a generic idea of what lane markings or road edges should look like, find them and figure out what the lanes look like and how to stay in the one you want to drive in. This is a way to get a car up and running fast. It is what humans do, most of the time.

Driving without a map means making a map

Most teams try to do more than driving without a map because software good enough to do that is also software good enough to make a map. To drive without a map you must understand the geometry of the road and where you are on it. You must understand even more, like what to do at intersections or off-ramps.

Creating maps is effectively the act of saying, "I will remember what previous cars to drive on this road learned about it, and make use of that the next time a car drives it."

Put this way it seems crazy not to build and use maps, even with the challenges listed below. Perhaps some day the technology will be so good that it can't be helped by remembering, but that is not this day.

The big advantages of the map

There are many strong advantages of having the map:

  • Human beings can review the maps built by software, and correct errors. You don't need software that understands everything. You can drive a tricky road that software can't figure out. (You want to keep this to a minimum to control costs and delays, but you don't want to give it up entirely.)
  • Even if software does all the map building, you can do it using arbitrary amounts of data and computer power in cloud servers. To drive without a map you can must process the data in real time with low computing resources.
  • You can take advantage of multiple scans of the road from different lanes and vantage points. You can spot things that moved.
  • You can make use of data from other sources such as the cities and road authorities themselves.
  • You can cooperate with other players -- even competitors -- to make everybody's understanding of the road better.

One intermediate goal might be to have cars that can drive with only a navigation map, but use more detailed maps in "problem" areas. This is pretty similar, except in database size, with automatic map generation with human input only on the problem areas. If your non-map driving is trustworthy, such that it knows not to try problem areas, you could follow the lower cost approach of "don't map it until somebody's car pulled over because it could not handle an area."

Levels of maps

There are two or three components of the maps people are building, in order to perform the functions above. At the most basic level is something not too far above the navigation maps found in phones. That's a vector map, except with lane level detail. Such maps know how many lanes there are, and usually what lanes connect to what lanes. For example, they will indicate that to turn right, you can use either of the right two lanes at some intersections.

Topic: 

Project Fi gives extra free Data Sims

Ten years ago, I asked Cell companies to let me have more than one phone on the same number. Recently I noticed the ability to almost do that with Google Project FI cell service.

Topic: 

Car Rental: Rent me a cooler and lots of other gear for road trips

Something I do from time to time is a road trip in a rental car. And while car rental companies much prefer the business customer who rents a big car at a high price, then just drives it to their meeting and back to the airport, they are not averse to the less profitable road trip business.

So here are some things they could do to make it better for that sort of customer.

Topic: 

Can't we make overbooking more efficient and less painful with our mobile devices?

I've written before about overbooking and how it's good for passengers as well as for the airlines. If we have a service (airline seats, rental cars, hotel rooms) where the seller knows it's extremely likely that with 100 available slots, 20 will not show up, we can have two results:

Topic: 

No, you don't need to drive a billion miles to test a robocar

Earlier I noted that Nidi Kalra of Rand spoke at the AVS about Rand's research suggesting that purely road testing robocars is an almost impossible task, because it would take hundreds of millions to a billion miles of driving to prove that a robocar is 10% better than human drivers.

(If the car is 10x better than humans, it doesn't take that long, but that's not where the first cars will be.)

This study has often been cited as saying that it's next to impossible to test robocars. The authors don't say that -- their claim is that road testing will not be enough, and will take too long to really work -- but commenters and press have taken it further to the belief that we'll never be able to test.

The mistake is that while it could take a billion miles to prove a vehicle is 10% safer than human drivers, that is not the goal. Rather, the goal is to decide that it's unlikely it is much worse than that number. It may seem like "better than X" and "not worse than X" are the same thing, but they are not. The difference is where you give the benefit of the doubt.

Consider how we deal with new drivers. We give them a very basic test and hand them a licence. We presume, because they are human teens, that they will have a safety record similar to other human teens. Such a record is worse than the level for experienced drivers, and in fact one could argue it's not at all safe enough, but we know of no way to turn people into experienced drivers without going through the risky phase.

If a human driver starts showing evidence of poor skills or judgments -- lots of tickets, and in particular multiple accidents, we pull their licence. It actually takes a really bad record for that to happen. By my calculations the average human takes around 20 years to have an accident that gets reported to insurance, and 40-50 years to have one that gets reported to police. (Most people never have an injury accident, and a large fraction never have any reported or claimed accident.)

Topic: 

Federal regulations past next hurdle

Today's news is preliminary, but a U.S. house committee panel passed some new federal regulations which suggest sweeping change in the US regulatory approach to robocars.

Topic: 

Uncovered: NHTSA Levels of 1900 (Satire)

I have recently managed to dig up some old documents from the earliest days of car regulation. Here is a report from NHTSA on the state of affairs near the turn of the 20th century.

National Horse Trail Safety Administration (NHTSA)

Regulation of new Horse-Auto-mobile Vehicles (HAV), sometimes known as "Horseless carriages."

In recent years, we've seen much excitement about the idea of carriages and coaches with the addition of "motors" which can propel the carriage without relying entirely on the normal use of horses or other beasts of burden. These "Horseless carriages," sometimes also known as "auto mobile" are generating major excitement, and prototypes have been generated by men such as Karl Benz and Armand Peugeot, along with the Duryea brothers, Ransom Olds and others in the the USA. The potential for these carriages has resulted in many safety questions and many have asked if and how NHTSA will regulate safety of these carriages when they are common.

Previously, NHTSA released a set of 4, and later 5 levels to classify and lay out the future progression of this technology.

Levels of Motorized Carriages

Level 0

Level zero is just the existing rider on horseback.

Level 1

Level one is the traditional horse drawn carriage or coach, as has been used for many years.

Level 2

A level 2 carriage has a motor to assist the horses. The motor may do the work where the horses trot along side, but at any time the horses may need to take over on short notice.

Level 3

In a level 3 carriage, sometimes the horses will provide the power, but it is allowed to switch over entirely to the "motor," with the horses stepping onto a platform to avoid working them. If the carriage approaches an area it can't handle, or the motor has problems, the horses should be ready, with about 10-20 seconds notice, to step back on the ground and start pulling. In some systems the horse(s) can be in a hoist which can raise or lower them from the trail.

Level 4

A Level 4 carriage is one which can be pulled entirely by a motor in certain types of terrain or types of weather -- an operating domain -- but may need a horse at other times. There is no need for a sudden switch to the horses, which should be pulled in a trailer so they can be hitched up for travel outside the operating domain.

Level 5

The recently added fifth level is much further in the future, and involves a "horseless" carriage that can be auto mobile in all situations, with no need for any horse at all. (It should carry a horse for off-road use or to handle breakdowns, but this is voluntary.)

Topic: 

News and commentary from AUVSI/TRB Automated Vehicle Symposium 2017

In San Francisco, I'm just back from the annual Automated Vehicle Symposium, co-hosted by the AUVSI (a commercial unmanned vehicle organization) and the Transportation Research Board, a government/academic research organization. It's an odd mix of business and research, but also the oldest self-driving car conference. I've been at every one, from the tiny one with perhaps 100-200 people to this one with 1,400 that fills a large ballroom.

Toyota Research VC Fund

Tuesday morning did not offer too many surprises. The first was an announcement by Toyota Research Institute of a $100M venture fund. Toyota committed $1B to this group a couple of years ago, but surprisingly Gil Pratt (who ran the DARPA Robotics Challenge for humanoid-like robots) has been somewhat a man of mixed views, with less optimistic forecasts.

Different about this VC fund will be the use of DARPA like "calls." The fund will declare, "Toyota would really like to see startups solving problem X" and then startups will apply, and a couple will be funded. It will be interesting to see how that pans out.

Nissan's control room is close to live

At CES, Nissan showed off their plan to have a remote control room to help robocars get out of sticky situations they can't understand like unusual construction zones or police directing traffic. Here, they showed it as further along and suggested it will go into operation soon.

This idea has been around for a while (Nissan based it on some NASA research) and at Starship, it has always been our plan for our delivery robots. Others are building such centers as well. The key question is how often robocars need to use the human assistance, and how you make sure that unmanned vehicles stay in regions where they can get a data connection through which to get help. As long as interventions are rare, the cost is quite reasonable for a larger fleet.

This answers the question that Rod Brooks (of Rethink Robotics and iRobot) recently asked, pondering how robocars will handle his street in Cambridge, where strange things like trucks blocking the road to do deliveries, are frequently found.

It's a pretty good bet that almost all our urban spaces will have data connectivity in the 2020s. If any street doesn't have solid data, and has frequent bizarre problems of any type, yet is really important for traversal by unmanned vehicles -- an unlikely trifecta -- it's quite reasonable for vehicle operators to install local connectivity (with wifi, for example) on that street if they can't wait for the mobile data companies to do it. Otherwise, don't go down such streets in empty cars unless you are doing a pickup/drop-off on the street.

Switching Cities

Karl Iagenemma of nuTonomy told the story of moving their cars from Singapore, where driving is very regulated and done on the left, to Boston where it is chaotic and done on the right.

Topic: 

Can we test robocars the way we tested regular cars?

I've written a few times that perhaps the biggest unsolved problem in robocars is how to know we have made them safe enough. While most people think of that in terms of government certification, the truth is that the teams building the cars are very focused on this, and know more about it than any regulator, but they still don't know enough. The challenge is going to be convincing your board of directors that the car is safe enough to release, for if it is not, it could ruin the company that releases it, at least if it's a big company with a reputation.

Topic: 

Pages

Subscribe to RSS - blogs