Robocars

New regulations are banning the development of delivery robots

Many states and jurisdictions are rushing to write laws and regulations governing the testing and deployment of robocars. California is working on its new regulations right now. The first focus is on testing, which makes sense.

Unfortunately the California proposed regulations and many similar regulations contain a serious flaw:

The autonomous vehicle test driver is either in immediate physical control of the vehicle or is monitoring the vehicle’s operations and capable of taking over immediate physical control.

This is quite reasonable for testing vehicles based on modern cars, which all have steering wheels and brakes with physical connections to the steering and braking systems. But it presents a problem for testing delivery robots or deliverbots.

Delivery robots are world-changing. While they won’t and can’t carry people, they will change retailing, logistics, the supply chain, and even going to the airport in huge ways. By offering very quick delivery of every type of physical goods — less than 30 minutes — at a very low price (a few pennies a mile) and on the schedule of the recipient, they will disrupt the supply chain of everything. Others, including Amazon, are working on doing this by flying drone, but for delivery of heavier items and efficient delivery, the ground is the way to go.

While making fully unmanned vehicles is more challenging than ones supervised by their passenger, the delivery robot is a much easier problem than the self-delivering taxi for many reasons:

  • It can’t kill its cargo, and thus needs no crumple zones, airbags or other passive internal safety.
  • It still must not hurt people on the street, but its cargo is not impatient, and it can go more slowly to stay safer. It can also pull to the side frequently to let people pass if needed.
  • It doesn’t have to travel the quickest route, and so it can limit itself to low-speed streets it knows are safer.
  • It needs no windshield or wheel, and can be small, light and very inexpensive.

A typical deliverbot might look like little more than a suitcase sized box on 3 or 4 wheels. It would have sensors, of course, but little more inside than batteries and a small electric motor. It probably will be covered in padding or pre-inflated airbags, to assure it does the least damage possible if it does hit somebody or something. At a weight of under 100lbs, with a speed of only 25 km/h and balloon padding all around, it probably couldn’t kill you even if it hit you head on (though that would still hurt quite a bit.)

The point is that this is an easier problem, and so we might see development of it before we see full-on taxis for people.

But the regulations do not allow it to be tested. The smaller ones could not fit a human, and even if you could get a small human inside, they would not have the passive safety systems in place for that person — something you want even more in a test vehicle. They would need to add physical steering and braking systems which would not be present in the full drive-by-wire deployment vehicle. Testing on real roads is vital for self-driving systems. Test tracks will only show you a tiny fraction of the problem.

One way to test the deliverbot would be to follow it in a chase car. The chase car would observe all operations, and have a redundant, reliable radio link to allow a person in the chase car to take direct control of any steering or brakes, bypassing the autonomous drive system. This would still be drive-by-wire(less) though, not physical control.

These regulations also affect testing of full drive-by-wire vehicles. Many hybrid and electric cars today are mostly drive-by-wire in ordinary operations, and the new Infiniti Q50 features the first steer-by-wire. However the Q50 has a clutch which, in the event of system failure, reconnects the steering column and the wheels physically, and the hybrids, even though they do DBW regenerative braking for the first part of the brake pedal, if you press all the way down you get a physical hydraulic connection to the brakes. A full DBW car, one without any steering wheel like the Induct Navia, can’t be tested on regular roads under these regulations. You could put a DBW steering wheel in the Navia for testing but it would not be physical.

Many interesting new designs must be DBW. Things like independent control of the wheels (as on the Nissan Pivo) and steering through differential electric motor torque can’t be done through physical control. We don’t want to ban testing of these vehicles.

Yes, teams can test regular cars and then move their systems down to the deliverbots. This bars the deliverbots from coming first, even though they are easier, and allows only the developers of passenger vehicles to get in the game.

So let’s modify these regulations to either exempt vehicles which can’t safely carry a person, or which are fully drive-by-wire, and just demand a highly reliable DBW system the safety driver can use.

Robocar Prize in India, New Vislab car

I read a lot of feeds, and there are now scores of stories about robocars every week. Almost every day a new publication gives a summary of things. Here, I want to focus on things that are truly new, rather than being comprehensive.

Mahindra “Rise” Prize

The large Indian company Mahindra has announced a $700,000 Rise prize for robocar development for India’s rather special driving challenges. Prizes have been a tremendous boost to robocar development and DARPA’s contests changed the landscape entirely. Yet after the urban challenge, DARPA declared their work was done and stopped, and in spite of various efforts to build a different prize at the X-Prize foundation, the right prize has never been clear. China has annual prizes and has done so for several years, but they get little coverage outside of China.

An Indian prize has merit because driving in India is very much different, and vastly more chaotic than most of the west. As such, western and east Asian companies are unlikely to spend a lot of effort trying to solve the special Indian problems first. It makes sense to spur Indian development, and of course there is no shortage of technical skill in India.

Many people imagine that India’s roads are so chaotic that a computer could never drive on them. There is great chaos, but it’s important to note that it’s slow chaos, not fast chaos. Being slow makes it much easier to be safe. Safety is the hard part of the problem. Figuring out just what is happening, playing subtle games of chicken — these are not trivial, but they can be solved, if the law allows it.

I say if the law allows it because Indians often pay little heed to the traffic law. A vehicle programmed to strictly obey the law will probably fail there without major changes. But the law might be rewritten to allow a robot to drive the way humans drive there, and be on an open footing. The main challenge is games of chicken. In the end, a robot will yield in a game of chicken and humans will know that and exploit it. If this makes it impossible for the robot to advance, it might be programmed to “yield without injury” in a game of chicken. This would mean randomly claiming territory from time to time, and if somebody else refuses to yield, letting them hit you, gently. The robot would use its knowledge of physics to keep the impact low enough speed to cause minor fender damage but not harm people. If at fault, the maker of the robot would have to pay, but this price in damage to property may be worthwhile if it makes the technology workable.

The reason it would make things workable is that once drivers understood that, at random, the robot will not yield (especially if it has the right-of-way) and you’re going to hit it. Yes, they might pay for the damage (if you had the right of way) but frankly that’s a big pain for most people to deal with. People might attempt insurance fraud and deliberately be hit, but they will be recorded in 3D, so they had better be sure they do it right, and don’t do it more than once.

Of course, the cars will have to yield to pedestrians, cylists and in India, cows. But so does everybody else. And if you just jump in front of a car to make it hit the brakes, it will be recording video of you, so smile.

New Vislab Car

I’ve written before about Vislab at the University of Parma. Vislab are champions of using computer vision to solve the driving problem, though their current vehicles also make use of LIDAR, and in fact they generally agree with the trade-offs I describe in my article contrasting LIDAR and cameras.

They have a new vehicle called DEEVA which features 20 cameras and 4 lasers. Like so many “not Google” projects, they have made a focus on embedding the sensors to make them not stand out from the vehicle. This continues to surprise me, because I have very high confidence that the first customers of robocars will be very keen that they not look like ordinary cars. They will want the car to stand out and tell everybody, “Hey, look, I have a robocar!” The shape of the Prius helped its sales, as well as its drag coefficient.

This is not to say there aren’t people who, when asked, will say they don’t want the car to look too strange, or who say, looking at various sensor-adorned cars, that these are clearly just lab efforts and not something coming soon to roads near you. But the real answer is neither ugly sensors nor hidden sensors, but distinctive sensors with a design flair.

More interesting is what they can do with all those cameras, and what performance levels they can reach.

I will also note that car uses QNX as its OS. QNX was created by friend I went to school with in Waterloo, and they’re now a unit of RIM/Blackberry (also created by classmates of mine.) Go UW!

The world goes gaga for cool concept prototypes

One sign of how interest is building is the large reaction to some recent concept prototypes for robocars, two of which were shown in physical form at the Geneva auto show.

The most attention came to the Swiss auto research company Ringspeed’s XchangE concept which they based on a Tesla. They including a steering wheel which could move from side to side (and more to the point, go to the middle, where it could be out of the way of the two front seats,) along with seats that could recline to sleeping positions or for watching a big-screen TV, and which could reverse for face-to-face seating.

Also attracting attention was the Link and Go, an electric shuttle. In this article it is shown on the floor with the face to face configuration.

This followed on buzz late last year over the announcement of Zoox and their Boz concept, which features a car that has no steering wheel, and is symmetrical front to back (so of course seating is face to face.) The Zoox model takes this down to the low level, with 4 independent wheel motors. I’ve met a few times with Zoox’s leader, Tim Kentley-Klay of Melbourne, and the graphics skills of he and his team, along with some dynamic vision, also generated great buzz.

All this buzz came even though none of these companies had anything to say about the self-driving technology itself, which remains 99% of the problem. And there have been a number of designers who have put out graphic concepts like these for many years, and many writers (your unhumble blogger included) who have written about them for years.

The Zoox design is fairly radical — a vehicle with no windshield and no steering wheel — it can never be manually driven and a full robocar. Depending on future technologies like cheap carbon fibre and cost-effective 3-D printing for medium volumes, it’s a more expensive vehicle that you could make, but there may be a certain logic to that. Tesla has shown us that there are many people who will happily pay a lot more to get a car that is unlike any other, and clearly the best. They will pay more than can be rationally justified.

Speaking of Tesla, a lot of the excitement around the Rinspeed concept was that it was based on a Tesla. That appears to have been a wise choice for Rinspeed as people got more excited about it than any other concept I’ve seen. The image of people reclining, watching a movie, brought home an image that has been said many times in print but not shown physically to the world in the same way.

It’s easy for me (and perhaps for many readers of this blog) to feel that these concepts are so obvious that everybody just gets them, but it’s clearly not true. This revolution is going to take many people by surprise.

Commentary on California's robocar regulations workshop

Tuesday, the California DMV held a workshop on how they will write regulations for the operation of robocars in California. They already have done meetings on testing, but the real meat of things will be in the operation. It was in Sacramento, so I decided to just watch the video feed. (Sadly, remote participants got almost no opportunity to provide feedback to the workshop, so it looks like it’s 5 hours of driving if you want to really be heard, at least in this context.)

The event was led by Brian Soublet, assistant chief counsel, and next to him was Bernard Soriano, the deputy director. I think Mr. Soublet did a very good job of understanding many of the issues and leading the discussion. I am also impressed at the efforts Mr. Soriano has made to engage the online community to participate. Because Sacramento is a trek for most interested parties, it means the room will be dominated by those paid to go, and online engagement is a good way to broaden the input received.

As I wrote in my article on advice to governments I believe the best course is to have a light hand today while the technology is still in flux. While it isn’t easy to write regulations, it’s harder to undo them. There are many problems to be solved, but we really should see first whether the engineers who are working day-in and day-out to solve them can do that job before asking policymakers to force a solution. It’s not the role of the government to forbid theoretical risks in advance, but rather to correct demonstrated harms and demonstrated unacceptable risks once it’s clear they can’t be solved on the ground.

With that in mind, here’s some commentary on matters that came up during the session.

How do the police pull over a car?

Well, the law already requires that vehicles pull over when told to by police, as well as pull to the right when any emergency vehicle is passing. With no further action, all car developers will work out ways to notice this — microphones which know the sound of the sirens, cameras which can see the flashing lights.

Developers might ask for a way to make this problem easier. Perhaps a special sound the police car could make (by holding a smartphone up to their PA microphone for example.) Perhaps the police just reading the licence plate to dispatch and dispatch using an interface provided by the car vendor. Perhaps a radio protocol that can be loaded into an officer’s phone. Or something else — this is not yet the time to solve it.

It should be noted that this should be an extremely unlikely event. The officer is not going to pull over the car to have a chat. Rather, they would only want the car to stop because it is driving in an unsafe manner and putting people at risk. This is not impossible, but teams will work so hard on testing their cars that the probability that a police officer would be the first to discover a bug which makes the car drive illegally is very, very low. In fact, not to diminish the police or represent the developers as perfect, but the odds are much greater that the officer is in error. Still, the ability should be there.  read more »

A Critique of the NHTSA "Levels" for robocars

Last year, the NHTSA released a document defining “levels” from 0 to 4 for self-driving technology. People are eager for taxonomy that lets them talk about the technology, so it’s no surprise that use of the levels has caught on.

The problem is that they are misleading and probably won’t match the actual progress of technology. That would be tolerable if it weren’t for the fact that NHTSA itself made recommendations to states about how the levels should be treated in law, and states and others are already using the vocabulary in discussing regulations. Most disturbingly, NHTSA recommendations suggested states hold off on “level 4” in writing regulations for robocars — effectively banning them until the long process of un-banning them can be done. There is a great danger the levels will turn into an official roadmap.

Because of this, it’s worth understanding how the levels are already incorrect in the light of current and soon-to-be-released technology, and how they’re likely to be a bad roadmap for the future.

Read A Critique of the NHTSA and SAE “Levels” for robocars.

Would we ever ban human driving?

I often see the suggestion that as Robocars get better, eventually humans will be forbidden from driving, or strongly discouraged through taxes or high insurance charges. Many people think that might happen fairly soon.

It’s easy to see why, as human drivers kill 1.2 million people around the world every year, and injure many millions more. If we get a technology that does much better, would we not want to forbid the crazy risk of driving? It is one of the most dangerous things we commonly do, perhaps only second to smoking.

Even if this is going to happen, it won’t happen soon. While my own personal prediction is that robocars will gain market share very quickly — more like the iPhone than like traditional automotive technologies — there will still be lots of old-style cars around for many decades to come, and lots of old-style people. History shows we’re very reluctant to forbid old technologies. Instead we grandfather in the old technologies. You can still drive the cars of long ago, if you have one, even though they are horribly unsafe death traps by today’s standards, and gross polluters as well. Society is comfortable that as market forces cause the numbers of old vehicles to dwindle, this is sufficient to attain the social goals.

There are occasional exceptions, though usually only if they are easy to do. You do have to install seatbelts in a classic car that doesn’t have them, as well as turn signals and the other trappings of being street legal.

While I often talk about the horrible death toll, and how bad human drivers are, the reality is that this is an aggregation over a lot of people. A very large number of people will never have an accident in their lives, let alone one with major injuries or death. That’s a good thing! The average person probably drives around 600,000 miles in a lifetime in the USA. There is an accident for every 250,000 miles, but these are not evenly distributed. Some people have 4 or 5 accidents, and many have none.

As such, forbidding driving would be a presumption of guilt where most are innocent, and tough call from a political standpoint.

That doesn’t mean other factors won’t strongly discourage driving. You’ll still need a licence after all, and that licence might get harder and harder to get. The USA is one of the most lax places in the world. Many other countries have much more stringent driving tests. The ready availability of robotaxis will mean that many people just never go through the hassle of getting a licence, seeing no great need. Old people, who currently fight efforts to take away their licences, will not have the need to fight so hard.

Insurance goes down, not up

You will also need insurance. Today we pay about 6 cents/mile on average for insurance. Those riding in safe robocars might find that cost down to a penny/mile, which would be a huge win. But the cost for those who insist to drive is not going to go up because of robocars, unless you believe the highly unlikely proposition that the dwindling number of humans will cause more or deadlier accidents per person in the future. People tolerate that 6 cent/mile cost today, and they’ll tolerate it in the future if they want to. The cost will probably even drop a bit, because human driven cars will have robocar technologies and better passive safety (crumple zones) that make them much safer, even with a human at the wheel. Indeed, we may see many cars which are human driven but “very hard” to crash by mistake.

The relative cost of insurance will be higher, which may dissuade some folks. If you are told, “This trip will cost $6 if you ride, and $8 if you insist on driving” you might decide not to drive because 33% more cost seems ridiculous — even though today you are paying more for that cost on an absolute scale.

Highly congested cities will take steps against car ownership, and possibly driving. In Singapore, for example, you can’t have a car unless you buy a very expensive certificate at auction — these certificates cost as much as $100,000 for ten years. You have to really want a private car in Singapore, but still many people do.

Governments won’t have a great incentive to forbid driving but they might see it as a way to reduce congestion. Once robocars are packing themselves more tightly on the roads, they will want to give the human driven cars a wider berth, because they are less predictable. As such, the human driver takes up more road space. They also do more irrational things (like slow down to look at an accident.) One can imagine charges placed on human drivers for the extra road congestion they cause, and that might take people out of the driver’s seat.

The all-robocar lane tricks

There are certain functions which only work or only work well if all cars are robocars. They will be attractive, to be sure, but will they surpass the pressure from the human lobby?

  • It’s possible to build dynamic intersections without traffic lights or bridges if all cars are trusted robocars.
  • It’s possible to build low-use roads that are just two strips of concrete (like rails) if only robocars go on them, which is much cheaper.
  • It’s possible to safety redirect individual lanes on roads, without need for barriers, if all cars in the boundary lanes are robocars. Humans can still drive in the non-boundary lanes pretty safely.
  • We can probably cut congestion a lot in the all-robocar world, but we still cut it plenty as penetration increases over time.

These are nice, but really only a few really good things depend on the all-robocar world. Which is a good thing, because we would never get the cars if the benefits required universal adoption.

But don’t have an accident…

All of this is for ordinary drivers who are free of accidents and tickets. This might all change if you have an accident or get lots of tickets. Just as you can lose you licence to a DUI, I can foresee a system where people lose their licence on their first accident, or certainly on their second. Or their first DUI or certain major tickets. In that world, people will actually drive with much more caution, having their licence at stake for any serious mistake. A teen who causes an accident may find they have to wait several years to re-try getting a licence. It’s also possible that governments would raise the driving age to 18 or 21 to get people past the reckless part of their lives, but that this would not be a burden in a robocar world, with teens who are not even really aware of what they are missing.

I’ve driven over 35 years and had no accidents. I’ve gotten 2 minor speeding tickets, back in the 80s — though I actually speed quite commonly, like everybody else. It seems unlikely there would be cause to forbid me to drive, even in a mostly robocar world. Should I wish it. I don’t actually wish it, not on city streets. I still will enjoy driving on certain roads I would consider “fun to drive” in the mountains or by the coast. It’s also fun to go to a track and go beyond even today’s street rules. I don’t see that going away.

What governments should do to help and regulate robocars

In my recent travels, I have often been asked what various government entities can and should do related to the regulation of robocars. Some of them want to consider how to protect public safety. Most of them, however, want to know what they can do to prepare their region for the arrival of these cars, and ideally to become one of the leading centres in the development of the vehicles. The car industry is about to be disrupted, and most of the old players may not make it through to the new world. The ground transportation industry is so huge (I estimate around $7 trillion globally) that many regions depend on it as a large component of their economy. For some places it’s vital.

But there are many more questions than that, so I’ve prepared an essay covering a wide variety of ways in which policymakers and robocars will interact.

Read: Governments, The Law and Robocars

US push to mandate V2V radios -- is it a good choice?

It was revealed earlier this month that NHTSA wishes to mandate vehicle to vehicle radios in all cars. I have written extensively on the issues around this and regular readers will know I am a skeptic of this plan. This is not to say that I don’t think that V2V would not be useful for robocars and regular cars. Rather, I believe that its benefits are marginal when it comes to the real problems, and for the amount of money that must be spent, there are better ways to spend it. In addition, I think that similar technology can and will evolve organically, without a government mandate, or with a very minimal one. Indeed, I think that technology produced without a mandate or pre-set standards will actually be superior, cheaper and be deployed far more quickly than the proposed approach.

The new radio protocol, known as DSRC, is a point-to-point wifi style radio protocol for cars and roadside equipment. There are many applications. Some are “V2V” which means cars report what they are doing to other cars. This includes reporting one’s position tracklog and speed, as well as events like hitting the brakes or flashing a turn signal. Cars can use this to track where other cars are, and warn of potential collisions, even with cars you can’t see directly. Infrastructure can use it to measure traffic.

The second class of applications are “V2I” which means a car talks to the road. This can be used to know traffic light states and timings, get warnings of construction zones and hazards, implement tolling and congestion charging, and measure traffic.

This will be accomplished by installing a V2V module in every new car which includes the radio, a connection to car information and GPS data. This needs to be tamper-proof, sealed equipment and must have digital certificates to prove to other cars it is authentic and generated only by authorized equipment.

Robocars will of course use it. Any extra data is good, and the cost of integrating this into a robocar is comparatively small. The questions revolve around its use in ordinary cars. Robocars, however, can never rely on it. They must be be fully safe enough based on just their sensors, since you can’t expect every car, child or deer to have a transponder, ever.

One issue of concern is the timeline for this technology, which will look something like this:

  1. If they’re lucky, NHTSA will get this mandate in 2015, and stop the FCC from reclaiming the currently allocated spectrum.
  2. Car designers will start designing the tech into new models, however they will not ship until the 2019 or 2020 model years.
  3. By 2022, the 2015 designed technology will be seriously obsolete, and new standards will be written, which will ship in 2027.
  4. New cars will come equipped with the technology. About 12 million new cars are sold per year.
  5. By 2030, about half of all cars have the technology, and so it works in 25% of accidents. 3/4 of those will have the obsolete 2015 technology or need a field-upgrade. The rest will have soon to be obsolete 2022 technology. Most cars also have forward collision warning by this point, so V2V is only providing extra information in a tiny fraction of the 25% of accidents.
  6. By 2040 almost all cars have the technology, though most will have older versions. Still, 5-10% of cars do not have the technology unless a mandate demands retrofit. Some cars have the equipment but it is broken.

Because of the quadratic network effect, in 2030 when half of cars have the technology, only 25% of car interactions will be make use of it, since both cars must have it. (The number is, to be fair, somewhat higher as new cars drive more than old cars.)  read more »

Michigan to build fake-downtown robocar test site

I’m working on a new long article about advice to governments on how they should react to and encourage the development of robocars.

An interesting plan announced today has something I had not thought of: Michigan is funding the development of a fake downtown to act as a test track for robocar development. The 32 acre site will be at the University of Michigan, and is expected to open soon — in time for the September ITS World Congress.

Part of the problem with my advice to governments is that my main recommendation is to get out of the way. To not try too hard both to help and to regulate, because even those of us trying to build the vehicles don’t have a certain handle on the eventual form of the technology.

A test track is a great idea, though. Test tracks are hugely expensive to make, entirely outside of the means of small entrepreneurs. They immediately resolve most safety concerns for people just starting out — every team has had small runaway issues at the very start. Once past that, they can be shared, in fact having multiple vehicles running the track can be a bonus rather than a problem.

Big car companies all have their own test tracks, but these are mostly real tracks, not urban streets. Several companies have built pre-programmed robotic cars which drive in specific patterns to test ADAS systems and robocars. The DARPA Urban Challenge was run on an fake set of urban streets on an old military base, so this idea goes back to the dawn of the modern field. (Old military bases are popular for this — Mythbusters used a California one for their test of blind and drunk driving.)

This track will probably bring teams to Michigan, which is what they want. Detroit is in trouble, and it knows it. Robocars are going to upend the car industry. Incumbent players are going to fall, and new players are going to rise, and that could be very bad news for Detroit.

My home province of Ontario is facing the same problem, to a lesser degree. A lot of the Ontario economy is in cars as well, and so they’ve started a plan to introduce testing legislation. I don’t think this is the right plan — testing is already legal with a good supervising driver in most jurisdictions, though I have not yet examined the Ontario code. Ontario has one big advantage over Michigan, though, in that it is also a high-tech centre. Right now the car companies in Detroit are finding it very difficult to convince high-tech stars to come move to Detroit, in spite of being able to offer high pay and the fact that you can literally get a mansion for the price of the downpayment on a nice San Francisco condo. Toronto doesn’t have the same problem — in fact it’s one of the most desired places to live for Canadians, and for people from all over the world. Ontario’s combination of high-tech and big automotive might end up doing well.

At least in Ontario, everybody will be motivated to solve the snow problem sooner than the California companies are.

The Valley of Danger -- medium speed roads for robocars

With last week’s commercial release of the Navia, I thought I would release a new essay on the challenges of driving robocars at different speeds.

As the Navia shows, you can be safe if you’re slow. And several car company “traffic jam assist” products say the same thing. On the other end, we see demos taking place at highway speeds. But what about the middle range — decent speeds on urban streets?

Turns out that’s one of the harder problems, and so there is a “valley” in the chart which makes safe operation harder in that zone.

So read my more detailed essay on these challenges: The Valley of Danger for Robocars

Induct's "Navia" officially for sale for $250,000

A significant milestone was announced this week. Induct has moved their “Navia” vehicle into commercial production, and is now taking orders, though at $250,000 you may not grab your wallet.

This is the first commercial robocar. Their page of videos will let you see it in operation in European pedestrian zones. It operates unmanned, can be summoned and picks up passengers. It is limited to a route and stops programmed into it.

The “catch” is that it stays safe by going only 20km/h, where it is much harder for it to harm things. It’s aimed at the campus shuttle market, rather than going on public roads, but it drives on ordinary pavement, not requiring special infrastructure, since it localizes using a prepared laser map of the route.

Now 20km/h (12mph) is not very fast, though suitable for a campus shuttle. This slow speed and limited territory may make some skeptical that this is an important development, but it is.

  1. This is a real product, ready to deploy with civilians, without its own dedicated track or modified infrastructure.
  2. The price point is actually quite justifiable to people who operate shuttles today, as a shuttle with human driver can cost this much in 1.5 years or less of operation.
  3. It smashes the concept of the NHTSA and SAE “Levels” which have unmanned operation as the ultimate level after a series of steps. The Navia is at the final level already, just over a constrained area and at low speed. If people imagined the levels were a roadmap of predicted progress, that was incorrect.
  4. Real deployment is teaching us important things. For example, Navia found that once in operation, teen-agers would deliberately throw themselves in front of the vehicle to test it. Pretty stupid, but a reminder of what can happen.

The low speed does make it much easier to make the vehicle safe. But now it become much easier to show that over time, the safe speed can rise as the technology gets better and better. (To a limit — see my article on the dangers at different speeds.)

The route limitation has two elements. The first is that they want to keep it only in safe locations, which makes sense for an early release. It also avoids legal issues. The second is simpler — they are using a map based approach, so they can only drive somewhere that has been mapped. Mapping means driving a scanner over the route and building a map of all the details, and then typically having humans confirm the map. This is the same way that the cars from Google and almost all other vendors do it when they are doing complex things that go beyond following lane markers on a highway. As such it is not that big a barrier. While building new infrastructure is hugely expensive, mapping it is much more modest in comparison, though non-trivial. Covering the whole world would take time, but it becomes possible to quickly add routes and destinations.

I single out the Navia because of its ability to drive without requiring any changes to the roads or extra infrastructure. Previous shuttle-style systems like the ULTra PRT at Heathow (which I rode a couple of months ago), the Masdar PRT and earlier Cybercar projects all required a dedicated guideway or fenced-off ground track to run. While the Navia is being kept to private property for safety and legal reasons, there is no technical reason it could not operate in public spaces, which moves it from PRT into Robocar territory.

The Navia is very much designed to be a shuttle. It is open-air and doesn’t really have seats, just padded bars to lean against. There is no steering wheel or other traditional control. This belies that common expectation of the first vehicles looking just like traditional cars.

Félicitations, Induct.

CES Robocar News

CES has become a big show for announcing car technology. I’m not there this year due to other engagements, but here’s some of what has been in the news.

Most impressive is probably BMW’s prototype 2 and 6 series vehicles, which have features both for existing drivers and for future self-operation. The video below shows a BMW 235i doing a slalom around cones on its own, and then drifting on wet pavement. BMW claims their active assist will help you in both understeer and oversteer situations. That feature wil be in trials in 2015. Here’s an older article on BMW efforts.

Earlier I wrote about Ford’s plan for the C-Max which positions its solar panel under a concentrator which remains more a concept gimmick but is still interesting.

There’s been a raft of “connected car” announcements, by which we mean cars using the mobile network to provide apps and related features. The biggest news is a new consortium planning to use Android as a platform for connected infotainment in cars, called the Open Automotive Alliance. It has GM, Audi, Honda, and Hyundai involved, and of course Google. It may be bad news for QNX, which for now is the remaining shining star in RIM/Blackberry’s portfolio, as QNX has a strong position as the infotainment OS in a number of cars. (Having gone to school at UW long ago, I am friends with all the founders of these companies.)

The win will be cars that don’t try to be too smart, and let the phones do most of the work. My phone is just a few months old, while my car is ten years old, and this ratio is not that uncommon. Put the smarts where the innovation is moving fastest, because even if you don’t, they wild end up there eventually by consumer demand.

Audi is demonstrating their A7 with new self-drive features at CES. It even has Nevada plate number 046 for Autonomous vehicle testing — people are wondering who all these plates have gone to. Google only took a few, Continental took some, and Audi took some around 007. While nobody does primary testing in Nevada, everybody doing test demos at CES needs these plates.

Bosch is running a full “driverless car experience” in their booth and some panels during the show. The panel is happening in just 15 minutes as I write this.

Delphi is also doing a demo of all their driver assist tech. This is mostly aimed at driver monitoring, which is seen as important for the transition to full robocar operation where lots of driver intervention is required.

Induct is showing off the Navia in a track — I write more details about how it is now for sale. Though it’s not quite “consumer” electronics.

Ford's solar charging robocar design

One of the silly ideas I see often is the solar powered car. In 2011, I wrote an article about the solar powered robocar which explained some of the reasons why the idea is anti-green, and how robocars might help.

I was interested to see a concept from Ford for a solar charging station for a robocar which goes further than my idea.

In the Ford proposal, there is a special garage with sun exposure and a giant Fresnel lens, which can focus light on a solar panel on the car parked in the garage, effectively a solar concentrator based PV system. The trick is that the car is able to move during the day, so as the sun moves (or rather the Earth and the garage turn with respect to the sun) the car adjusts to put the panel in the beam of the Fresnel lens. They predict they could get 21 miles of range in six hours of sunlight. That’s a bit over 5kwh, meaning the panel must generate just under a kw during those 6 hours.

Normally 1kw of solar panel is quite large, and the roof of the garage is large to make this happen. The downside is this would make the panels really, really hot, which reduces their efficiency and frankly, could be dangerously hot and also wear out the panels and roof quickly. (We would need to see what temperature parameters they plan for.)

In the end, this system still falls into the pitfalls that make a green solar powered car a contradiction in terms. To be green, you must use all the power panels generate. When this car is not in the garage, its panel will produce minimal output, since as it moves about its day it will park in shade or at the wrong angle to the sun, and the panels will be horizontal. The only way to properly exploit panels is to have them at the very least facing south in a permanently sunny spot, tilted to the latitude (or sun-tracking) and combined with the grid, so every single joule they generate is put to use.

There is a minor win for solar on a vehicle, which is when you are driving, the energy is never stored, and thus battery weight can be slightly lowered and there are no storage or transmission losses. However, unless you are going to make something like the cars that compete in the solar races, this doesn’t make up for the waste of having panels whose output is mostly unused. Toyota figured out a good use for a panel on the Prius — it runs the ventilation fan, whose demand matches the sunlight and heat of the day. Every joule of that panel is used, and keeping the car cool saves on AC when driving. Had the panel fed into the hybrid battery, its output would be thrown away most of the time when the battery was not low.

As I noted in my earlier article, robocars could make better use of solar panels because they could arrange to always store themselves in the sun, pointed in the right direction, and could even go find connection stations to feed their power back to the grid if the batteries were not low. (You need some robotic ability to connect to the charging station without a human, and ideally without the 10% loss of inductive coupling but even that is tolerable.)

In that world, you could put up Fresnel or other concentrating charging stations which cars could seek out to make the best use of their panels. However, these cars are now consigned to never being garaged or parking in the shade, which is not really what we’re looking for.

This does have the advantage of not needing to plug in, though inductive charging stations are also something robocars would move themselves to. If the vehicles are used off-grid, this would be somewhat more valuable even if on-grid the panels (concentrated or not) should just feed that grid.

There’s another downside to the heat of this system. In the summer at least, you then have to spend a fair bit of energy cooling the car down. The extra energy gained from sitting in the sun might be lost in cooling if the wait was modest. A cooling fan is a good idea while in the sun.

In other News

Michigan has passed its law regulating the testing of robocars there. It’s being touted as a way to “save jobs” by preventing the flight of automaking innovation to other locations. It’s going to be a tall order. The Detroit car companies are opening labs in silicon valley, in part because it’s very difficult to recruit the very best people to come live in Detroit, no matter how cheap the housing is — and you can have a mansion in Detroit for the price of a shack in San Francisco. If Michigan wants to retain its car dominance, it will need to do even more.

Several announcements planned for CES. Delphi will be showing off their latest work, which is more ADAS related. Bosch will be showing off their prototype cars, and presumably Audi and others will return.

Results from the Ann Arbor V2V test bed are expected soon. The original plan was for the DoT to propose regulations demanding V2V in all new cars in 2013. They missed that deadline, of course, but many expect something very soon. Results of this testbed are expected to be crucial. I predict the results will be lukewarm when viewed through the robocar lens — which is to say, the V2V systems will only have been found able to prevent a tiny number of incidents which could not also be detected with advanced sensors directly on the cars. They may not publish that number, as there are incentives to make the test report as a success.

UK, Michigan & Sweden push robocars, Toyota doesn't -- and Amazon delivery drones

The past few weeks have been rife with governments deciding to throw support behind robocars.

I wrote earlier about the plan for pods in Milton Keynes, NW of London. The UK has also endowed a a £10m prize fund to build vehicles and for a town to adapt to them. This will be managed in part by the Oxford team which has built a self-driving Wildcat and Nissan LEAF.

In Michigan, they have been working on a new robocar law that may be the next one, and the University of Michigan has a plan to put a fleet of cars out by 2021. Ann Arbor is the site of the ITS V2V testbed, which will probably slow this effort down, but Michigan is keen on not having the auto industry taken away from it.

Volvo, while now a Chinese company, has had many efforts, including their Sartre convoy experiments. Now they have declared that they will have 100 cars on the road in Gothenberg in 2017. They will also build parking systems.

In spite of all this, Toyota recently declared it is only building vehicles for research purposes, and has no desire to market such cars. Toyota had been a leader among the Japanese companies (until Nissan took over that role by building a research lab in silicon valley) but it’s surprising to see them drop out. Of course I predict they will regret that.

Amazon drone delivery

The big news this weekend was the announcement that Amazon.com wants to do drone delivery, accompanied with a concept video. This got everybody buzzing. I was interviewed for stories by the Washington Post and Wall Street Journal (paywall) as well as the New York Times because of my prior writings on deliverbots.

Some of you may remember I post I did early last year on drone defibrillator delivery and the efforts of our students at Singularity University to build Matternet for drone delivery in the developing world.

Drone delivery is interesting, though its big value will be in lightweight, urgent items like medicines. Ground vehicles will still win for cost and efficiency for most items. However, the drones can be much faster, and have options like delivering to places ground vehicles can’t reach — like your roof or your backyard. Deliverbots must get safe and legal on busy streets, drones have to figure out how to not hit one another (or people on the ground) in crowded airspace. The LIDARS that make ground vehicles practical have enough range for ground travel but poor range as flying sensors. Radar is good in the air but can have interference problems.

Getting a drone to land at any given address is a hard problem. There are trees, overhead wires, wind gusts and strange geometries. I suspect drone delivery will work best if the drop location has already been scanned and mapped. However, if there is a decent clearing, I could see it working by having the recipient put down a special marker (like a QR code) on the ground. GPS is not accurate enough to fly with but camera could pull out special markers.

One great marker would be your cell phone. Either with its “flash” LED pointed up and pulsing, or its screen, if the screen is bright enough. Go outside, put your phone down, have it guide the drone partway in with radio and GPS, and then have the drone’s camera follow the flashing light. If phones had better raw GPS access (they don’t — not yet) they could also provide differential GPS information to a drone to guide it in.

This works because with robot delivery, you never need to deliver to an address — you deliver to a person. Wherever that person is, or at least never when the person isn’t there, unless you want to. A robot delivery service will wait for a signal that you are home or one the way before delivering to your home, but might also deliver to you in whatever parking lot you are in, or your office. The robot won’t release the cargo unless it gets the ACK from your phone as you “sign” for it.

Multi-copter drones today don’t have a lot of capacity and range, but it’s improving. Liquid fuels for larger drones might help boost that. Fixed wing drones have much more capacity, but they need runways (or a skilled launcher) to take off. Some fixed-wing drones can land vertically if they have motors powerful enough to lower them down tail first though they tend to need something suitable to land on in such cases.

Robot delivery should make existing retailers, even big box ones like WalMart, scared of online retailers like Amazon. While a drone won’t replace WalMart on a trip where you plan to fill your shopping cart, it might well be very suitable for the things you buy from Walgreens.

More Robocar Updates and Press

Back from Budapest, tomorrow I head to Buenos Aires to talk cars and security to city officials. (I wondered if I am ending up touring the world in alphabetical order.)

In the meantime, some interesting tidbits and press:

  • One of the best articles about Google’s project in the New Yorker
  • I appear on APM’s “Marketplace Tech” for a short piece on robocars.
  • A new project in the Netherlands spearheaded by TNO & Delft. I visited with TNO early last year to talk to them about their driving simulators and working to convince them that they should focus on LIDAR and self-driving. They were skeptical about the effort back then!
  • More interest from government officials. Hearings in DC today, more progress towards passing a law in Michigan to enable Robocar testing, and a ride by the Japanese PM in several vehicles at the Toyko Motor Show. I also met with top Hungarian officials in Budapest, where a large fraction of their GDP comes from car manufacture. They need to bring the R&D to Hungary to exploit this technology, though. French President Hollande has also called for an initiative there. The jurisdictional competition I wondered about many years ago is getting ready to start humming.

Let’s see what I can tell the Argentinians. They have one of the poorer driving records in Latin America and kill 3 times as many people per 100,000 vehicles than the USA does.

Robocars in Milton Keynes, more surveys and studies

I’m back from one European tour and this weekend back in Budapest for our “Singularity University Summit” on the 15th and 16th. If you are nearby, come check it out.

While I’ve been away, a few news items.

UK Grants and plan for Milton Keynes

In the UK, they want to push for advanced transportation. This includes a 75 million pound grant program, and some money for a robocar taxi system in the town of Milton Keynes, NW of London. Milton Keynes is one of those those “cities of the future of the past” — a planned community with an unusual geometry, and the planned pods may fit right in. At first, they are planning a PRT-like service with private ROW for the pods, and the people involved include companies from the PRT field like ARUP. (It was reported in some news reports that ULTra, which makes the PRT for the Heathrow Airport — I rode it last month — would be involved but they do not appear to be.) The big news is that the plan is for the pods in MK to eventually leave their private ROW and become self-driving taxis operating in the town.

(With any luck I may be on public radio tomorrow talking about this.)

Eventually a billion pound investment is planned in advanced transportation tech.

A town taxi is a worthwhile project, especially because the town can clear the roadblocks. I am less optimistic about what “big infrastructure” project companies like ARUP will do, because they have a different mindset. The great thing though is that even if these cars begin caged, the precedent will let them become truly useful by going door to door. MK was a town designed to be polycentric, with services in every block. Such towns are harder to serve with transit as trips go from anywhere to anywhere. Transit usually goes hand in hand with centralized towns where the vast majority of trips are to and from the city centre.

More studies

The Eno Transportation center released a report on the economics of robocars. This report outlines the cost savings with different levels of deployment, and predicts huge financial benefits even with modest deployment — something readers of this blog will not be surprised to hear reported.

Other studies released include a survey that suggest that 90% of people would use a robocar if it reduced their insurance rates. What’s interesting about this study is the huge number of positives. Prior studies have all seen much smaller numbers of people willing to use a robocar 20-35%. Those studies have been couched in the idea that it’s a new, expensive thing, not a money saver.

At first, robocars will be more expensive, as all new technologies are. But they will save people money in the long run, and the insurance savings will actually be only a small part of that equation. My own forecasts suggest that the price of driving can be cut by at least a third, perhaps by half, through the use of smaller, more efficient vehicles. While the costs of fuel and accidents (insurance) are high, the cost of depreciation is still the biggest cost in operating a car.

Measuring safety

In another nice tidbit, Chris Urmson, the head of the Google car project, gave a talk at RoboBusiness where he outlined some safety metrics being tracked. One of the big problems with robocars is that since humans have accidents only ever 250,000 miles and fatal accidents every 80 million miles, you can’t just drive every new software revision hundreds of millions of miles to compare it to humans. So Google is tracking how often the car does “risky” behaviours that are often found before accidents, like weaving out of lanes or other unsafe moves. And the results, he reports, are very good at present.

Cliff Nass

There has been lots of news coverage in the last month in various media — it is becoming so regular I don’t report it here. But one sad item sent to me involved the sudden death of Clifford Nass of Stanford’s REVS center. Cliff was an HCI expert who was moving his expertise towards cars and other related technologies and was a fixture at local events, always willing to be contrarian with facts to back it up — my kind of guy. It’s a tragedy.

Another survey had serious numbers of people saying that once they got a robocar “they would never drive again.” All these surveys do have an issue as they just propose a hypothetical and let the respondent figure out what it means. The real answers will come when more people get a real chance to try one out.

Robocars European Tour: London, Milan, Lecce, Vienna, Budapest

I’ll be back and forth to Europe in the next month giving a number of talks, mostly about robocars. Catch me at the following events:

  • Wired 2013 UK in London, where 4 Singularity U speakers will do an hour, including me — Oct 17-18. Looks like a great speaker list.
  • Frontiers of Interaction in Milan, Oct 25 — Design, Technology and Interactive.
  • TEDx Lecce in Lecce (boot heel of Italia) on Oct 26 — a major TEDx event with many international speakers.
  • Pioneers Festival in Vienna, Oct 30-31. Reports are this event is great, with an amazing venue. I’ll be interviewed on EFF topics and car topics there.

Singularity University Summit (Europe)

And the big event is the Singularity University Europe Summit a combination of the popular Singularity Summit series and the Singularity University Program. Most of our great faculty will be there for two days in Budapest, November 15-16. Readers of this blog can get a 10% discount by using the promo code “Bradbudapest” when registering. Expect a mini-reunion of a number of our European alumni there. To toot our own horn, the majority of folks who come out of our programs call it the best program they’ve ever been to. At the Franz Liszt Academy of Music in the core of town.

Enough with the Trolley problem, already

More and more often in mainstream articles about robocars, I am seeing an expression of variations of the classic 1960s “Trolley Problem.” For example, this article on the Atlantic website is one of many. In the classical Trolley problem, you see a train hurtling down the track about to run over 5 people, and you can switch the train to another track where it will kill one person. There are a number of variations, meant to examine our views on the morality and ethics of letting people die vs. actively participating in their deaths, even deliberately killing them to save others.

Often this is mapped into the robocar world by considering a car which is forced to run over somebody, and has to choose who to run over. Choices suggested include deciding between:

  • One person and two
  • A child and an adult
  • A person and a dog
  • A person without right-of-way vs others who have it
  • A deer vs. adding risk by swerving around it into the oncoming lane
  • The occupant or owner of the car vs. a bystander on the street — ie. car drives itself off a cliff with you in it to save others.
  • The destruction of an empty car vs. injury to a person who should not be on the road, but is.

I don’t want to pretend that this isn’t an morbidly fascinating moral area, and it will indeed affect the law, liability and public perception. And at some distant future point, programmers will evaluate these scenarios in their efforts. What I reject is the suggestion that this is anywhere high on the list of important issues and questions. I think it’s high on the list of questions that are interesting for philosophical class debate, but that’s not the same as reality.

In reality, such choices are extremely rare. How often have you had to make such a decision, or heard of somebody making one? Ideal handling of such situations is difficult to decide, but there are many other issues to decide as well.

Secondly, in the rare situations where a human encounters such a moral dilemma, that person does not sit there and have an inner philosophical dialogue on which is the most moral choice. Rather, they will go with a quick gut reaction, which is based on their character and their past thinking on such situations. Or it may not be that well based on them — it must be done quickly. A robot may be incapable of having a deep internal philosophical debate, and as such the robots will also make decisions based on their “gut,” which is to say the way they were programmed, well in advance of the event. A survey on robohub showed that even humans, given time to think about it, are deeply divided both on what a car should do and even how easy it is answer the question.

The morbid focus on the trolley problem creates, to some irony, a meta-trolley problem. If people (especially lawyers advising companies or lawmakers) start expressing the view that “we can’t deploy this technology until we have a satisfactory answer to this quandry” then they face the reality that if the technology is indeed life-saving, then people will die through their advised inaction who could have been saved, in order to be sure to save the right people in very rare, complex situations. Of course, the problem itself speaks mostly about the difference between failure to save and overt action to harm.

It turns out the problem has a simple answer which is highly likely to be the one taken. In almost every situation of this sort, the law already specifies who has the right of way, and who doesn’t. The vehicles will be programmed to follow the law, which means that when presented with a choice of hitting something in their right-of-way and hitting something else outside the right-of-way, the car will obey the law and stay in its right-of-way. The law says this, even if it’s 3 people jaywalking vs. one in the oncoming lane. If people don’t like the law, they should follow the process to change it.

I suspect companies will take very conservative decisions here, as advised by their lawyers, and they will mostly base things on the rules of the road. If there’s a risk of having to hit somebody who actually has the right-of-way, the teams will look for a solution to that. They won’t go around a blind corner so fast they could hit a slow car or cyclist. (Humans go around blind corners too fast all the time, and usually get away with it.) They won’t swerve into oncoming lanes, even ones that appear to be empty, because society will heavily punish a car deliberately leaving its right-of-way if it ends up hurting somebody. If society wants a different result here, it will need to clarify the rules. The hard fact of the liability system is that a car facing 5 jaywalking pedestrians that swerves into the oncoming lane and hits a solo driver who was properly in her lane will face a huge liability for having left their lane, while if it hits the surprise jaywalkers, the liability is likely to be much less, or even zero, due to their personal responsibility. The programmers normally won’t be making that decision, the law already makes it. When they find cases where the law and precedent don’t offer any guidance, they will probably take the conservative decision, and also push for it to give that guidance. The situations will be so rare, however, that a reasonable judgement will be to not wait on getting an answer.

Real human driving does include a lot of breaking the law. There is speeding of course. There’s aggressively getting your share in merges, 4-way stops and 3-point turns. And a whole lot more. Over time, the law should evolve to deal with these questions, and make it possible for the cars to compete on an equivalent level with the humans.

Swerving is particularly troublesome as an answer, because the cars are not designed to drive on the sidewalk, shoulder or in the oncoming lane. Oh, they will have some effort put into that, but these “you should not be doing this” situations will not get anywhere near the care and testing that ordinary driving in your proper right-of-way will get. As such, while the vehicles will have very good confidence in detecting obstacles in the places they should go, they will not be nearly as sure about their perceptions of obstacles where they can’t legally go. A car won’t be as good at identifying pedestrians on the sidewalk because it should never, or almost never drive on the sidewalk. It will instead be very good at identifying pedestrians in crosswalks or on the road. Faced with the option to avoid something by swerving onto the sidewalk, programmers will have to consider that the car can’t be quite as confident it is safe to do this illegal move, even if the sidewalk is in fact perfectly clear to the human eye. (Humans are general purpose perception systems and can identify things on the sidewalk as readily as they can spot them on the road.)

It’s also asking a lot more to have the cars able to identify subtleties about pedestrians near the road. If you decide a child should be spared over an adult, you’re asking the car to be able to tell children from adults, children from dwarves, tall children from short adults — all to solve this almost-never-happens problem. This is no small ask, since without this requirement, the vehicles don’t even have to tell a dog from a crawling baby — they just know they should not run over anything roughly shaped like that.

We also have to understand that humans have so many accidents, that as a society we’ve come to just accept them as a fact of driving, and built a giant insurance system to arrange financial compensation for the huge volume of torts created. If we tried to resolve every car accident in the courts instead of by insurance, we would vastly increase the cost of accidents. In some places, governments have moved to no-fault claim laws because they realize that battling over something that happens so often is counterproductive, especially when from the standpoint of the insurers, it changes nothing to tweak which insurance company will pay on a case by case basis. In New Zealand, they went so far as to just eliminate liability in accidents, since in all cases the government health or auto insurance always paid every bill, funded by taxes. (This does not stop people having to fight the Accident Compensation Crown Corporation to get their claims approved, however.)

While the insurance industry total size will dwindle if robocars reduce accident rates, there are still lots of insurance programs out there that handle much smaller risks just fine, so I don’t believe insurance is going away as a solution to this problem, even if it gets smaller.

The robocar and the bicycle

I’ve written about the issues relating to robocars and walking before. On one hand, some people may find themselves hardly ever walking with convenient door-to-door robocar transportation. Others may find the robocars may enable walking by allowing one-way waking trips, or enabling trips that that allow drive-walk-drive (eliminating short driving trips done just to save the trouble of walking back to get the car.)

Some similar factors apply to cycling. In a lot of the world, people bike because it’s much cheaper and they can’t afford a car. In the richer countries, most people can afford cars, but people bike because they enjoy it, or seek the exercise. They may also wish to avoid traffic, take routes only bikes can take, or avoid burning gasoline.

Let’s consider something possible with robocars: on-demand bicycle delivery. This could either be small delivery robots which can hold bicycles, or the “bikebot” — a small robot that clamps onto a bicycle and uses the bike’s wheels in concert with the robot’s. The bikebot could be a very efficient way to delivery a bicycle — certainly using less energy per mile than a human being does, or that producing the human’s food does. (A future bike could be designed so that a bikebot module can be clamped to it easily.)

Bicycles on demand offer the chance to cycle just when you want to. This could increase by quite a bit the times when you actually would cycle.

This gets combined with the robocar’s one-way taxi ability for humans. The robocar can bring the humans, and/or the bicycles to the places they want to bike. (More efficiently, too, since bikes on bike racks are not very aerodynamic.)

Just like it does for walking, the multi-mode, multi-leg trip becomes enabled. For example, I often find I drive to Google, and then to Nasa which is 2.5 miles away, and then back home. The 2.5 mile leg is ideal for cycling — there’s even a bike trail for much of it — but I can’t do this. First I would have to always bring my bike. (While Google does provide bikes, they are tiny single-gear bikes not meant to leave campus.) I could do the round-trip to come back and get my car, but that’s less convenient and can hit some nasty traffic patterns — traffic in and out of Google at rush hour is very bad. This is a personal example, but I am sure you can all think of examples from your own life where you take an intermediary trip today (in your car) of a few miles that might be very nice for biking.

Weather is another impediment to biking. When I used to bike commute, I would drive instead if the forecast called for rain in the afternoon, even if it was nice in the morning. With robocars I could bike in, and ride back.

Bike delivery means choice of bike. Recumbents are hard to carry in cars, but no challenge for a custom bike delivery robot. They are more comfortable to ride and faster on flats and downhill. You could even climb a hill in a diamond bike and descend in a recumbent. Or, let’s face it, you could also have the cheater’s option of climbing the hard hills in a car, or with power assist, and riding alone when going down or traversing flatter terrain. That might be a cheater’s option, but it would get more people cycling. Your gear could shadow you in a small cargo robot.

The robocar also offers easy transportation for you, and your bikes, to the places where it’s fun to bike. Get driven to the coast, then bike it, then get driven back from your endpoint. Or bike the “interesting parts” and drive the boring (or difficult) ones.

The main issue? At least at first, a human will need to be there to put a bike into a bike-delivery robot or clamp a bikebot on the bike. That means you must declare your destination in advance, with enough time to get that robot to that spot so you can hand over the bike. Perhaps in the future, there will be robots that can pick up a waiting bike without a human to help. Quick one-way trips will probably not be with your personal bike, but rather a rental. While there are those who insist on their personally chosen bike for long rides, most people can tolerate a quality rental bike for a quick urban leg. Trikes, which are super easy to ride, can also be offered, and even bikes and trikes with motor assist when you want the non-exercise advantages of a bicycle could be provided.

Cycling could also be great for commute times. Many commuters might be happy to get a ride (perhaps even in groups) to the outskirts of the CBD, but as they enter the congested zone, have their car drop them off next to a bike for a quick ride to work. Long enough to get some exercise but not long enough to need a shower. This does present a problem when it rains and everybody wants to ride all the way in, though.

In the less developed world, where the bicycle is the transportation of choice due to cost, the robocar will take away some riders as it offers lower-cost transportation, protected from the weather, without up-front investment. However, eventually the above factors from the developed world will bring people back to the bicycle even though they can afford the car.

Will EV recharging soar to very high costs?

I recently read a complaint by an EV driver that the charging station at De Anza College cost 55 cents/kwh. The national average price for electricity is around 10 cents, and at that price a typical electric car costs under 3 cents/mile for electricity. Gasoline costs about 8 cents/mile in a Prius, about 13 cents in a decent non-hybrid and 18 cents/mile in the average car which gets 22mpg. (At least here in California.) But the college’s charger’s electricity is almost 15 cents/mile in most electric sedans today, which is more than the gasoline in any gasoline car an eco-conscious person is likely to buy. (California Tier III electricity is 30 cents/kwh and thus almost as much.)

The price of charging stations varies wildly. A lot of them are free still, financed by other motivations. Tesla’s superchargers are free — effectively part of the cost of the car. It’s not uncommon for parking lots to offer free charging if you pay for parking, since parking tends to cost a fair bit more. After all, you won’t put more than 20kwh in a Leaf (and probably a lot less) and that costs just $2 at the average grid price.

This got me thinking of how the economics of charging will work in the future when electric cars and charging stations are modestly plentiful. While the national grid average is 10 cents, in many places heavy users can pay a lot more, though there are currently special deals to promote electric cars. Often the daytime cost for commercial customers is quite a bit higher, while the night is much lower. Charging stations at offices and shops will do mostly day charging; ones in homes and hotels will do night charging.

Unlike gasoline pumping, which takes 5 minutes, charging also involves parking. This is not just because charging takes several hours, but because that is enough time that customers won’t want to come and move their car once full, and so they will take the space for their full parking duration, which may be 8 or more hours.

Charging stations are all very different in utility. While every gasoline station near your route is pretty much equivalent to you, your charging station is your parking spot, and as such only the ones very close to your destination are suitable. While a cheap gas station 2 miles off your route would have a line around the block, a free charging stations 2 miles away from your destination is not that attractive! More to the point, the charging point close to your destination is able to command a serious premium. That have a sort of monopoly (until charging stations become super common) on charging at the only location of value to you.

Put another way, when buying gasoline, I can choose from all the stations in town. When picking an EV charge, I can only choose from stations with an available spot a short walk from my destination. Such a monopoly will lead to high prices in a market where the stations are charging (in dollars :-) what the market will bear.

The market will bear a lot. While the electricity may be available cheap, EV owners might be easily talked into paying as much for electricity as gasoline buyers do, on a per-mile basis. The EV owners will be forgetting the economics of the electric car — you pay the vast bulk of your costs up front for the battery, and the electrical costs are intended to be minor. If the electricity cost rivals that of gasoline, the battery cost is now completely extra.

Naturally, EV owners will do at least half their charging at home, where they negotiate the best rate. But this could be worse, as they might well be talked into looking at the average. They could pay 80 cents/kwh in the parking lot and 10 cents/kwh at home, and figure they are getting away with 45 cents and “still beating gasoline.” They would be fooling themselves, but the more people willing to fool themselves, the higher prices will go.

There is another lack of choice here. For many EV drivers, charging is not optional. Unless they have easy range to get back home or to another charging place they will spend lots of time, you must charge if you are low and the time opportunity presents itself. To not do so is either impossible (you won’t get home) or very foolish (you constrain what your EV can do.) When you face a situation where you must charge, and you must charge in a particular place, the potential for price gouging becomes serious.  read more »

Syndicate content