Robocars

The challenge of robotaxis for the poor

While I’m very excited about the coming robocar world, there are still many unsolved problems. One I’ve been thinking about, particularly with my recent continued thinking on transit, is how to provide robotaxi service to the poor, which is to say people without much money and without credit and reputations.

In particular, we want to avoid situations where taxi fleet operators create major barriers to riding by the poor in the form of higher fees, special burdens, or simply not accepting the poor as customers. If you look at services like Uber today, they don’t let you ride unless you have a credit card, though in some cases prepaid debit cards will work.

Today a taxi (or a bus or Uber style vehicle) has a person in it, primarily to drive, but they perform another role — they constrain the behaviour of the rider or riders. They reduce the probability that somebody might trash the vehicle or harass or be violent to another passenger.

Of course, such things happen quite rarely, but that won’t stop operators from asking, “What do we do when it does happen? How can we stop it or get the person who does it to pay for any damage?” And further they will say, “I need a way to know that in the rare event something goes wrong, you can and will pay for it.” They do this in many similar situations. The problem is not that the poor will be judged dangerous or risky. The problem is that they will be judged less accountable for things that might go wrong. Rich people will throw up in the back of cars or damage them as much as the poor, perhaps more; the difference is there is a way to make them pay for it. So while I use the word poor here, I really mean “those it is hard to hold accountable” because there is a strong connection.

As I have outlined in one of my examinations of privacy a taxi can contain a camera with a physical shutter that is open only between riders. It can do a “before and after” photograph, mostly to spot if you left items behind, but also to spot if you’ve damaged or soiled the vehicle. Then the owner can have the vehicle go for cleaning, and send you the bill.

But they can only send you the bill if they know who you are and have a way to bill you. For the middle class and above, that’s no problem. This is the way things like Uber work — everybody is registered and has a credit card on file. This is not so easy for the poor. Many don’t have credit cards, and more to the point, they can’t show the resources to fix the damage they might do to a car, nor may they have whatever type of reputation is needed so fleet operators will trust them. The actions of a few damn the many.

The middle class don’t even need credit cards. Those of us wishing to retain our privacy could post a bond through a privacy protecting intermediary. The robotaxi company would know me only as “PrivacyProxy 12323423” and I would have an independent relationship with PrivacyProxy Inc. which would accept responsibility for any damage I do to the car, and bill me for it or take money from my bond if I’m truly anonymous.

Options for the poor

Without the proxy, robotaxi operators will want some sort of direct accountability from passengers for any problems they might cause. Even for the middle class, it mostly means being identified, so if damage is found, you can be tracked down and made to pay. The middle class have ability to pay, and credit. The poor don’t, at least many of them don’t.

People with some level of identity (an address, a job) have ways to be accountable. If the damage rises to the level where refusing to fix it is a crime at some level, fear of the justice system might work, but it’s unlikely the police are going to knock on somebody’s door for throwing up in a car.

In the future, I expect just about everybody of all income levels will have smartphones, and plans (though prepaid plans are more common at lower income levels.) One could volunteer to be accountable via the phone plan, losing your phone number if you aren’t. Indeed, it’s going to be hard to summon a car without a phone, though it will also be possible using internet terminals, kiosks and borrowing the phones of others.

More expensive rides

A likely solution, seen already in the car rental industry, is to charge extra for insurance for those who can’t prove accountability another way. Car rental company insurance is grossly overpriced, and I never buy it because I have personal insurance and credit cards to cover such issues. Those who don’t often have to pay this higher price.

It’s still a sad reality to imagine the poor having to pay more for rides than for the rich.

An option to mitigate this might be cars aimed at carrying those who are higher risk. These cars might be a bit more able to withstand wear and tear. Their interiors might be more like bus interiors, easily cleaned and harder to damage, rather than luxury leather which will probably be only for the wealthier. To get one, you might have to wait longer. While a middle-class customer ordering a cheap car might be sent a luxury car because that’s what’s spare at the time, it is less likely an untrusted and poor customer would get that.

Before we go do far, I predict the cost of robotaxi rides will get well below $1/mile, heading down to 30 cents/mile. Even with a 30% surcharge, that’s still cheaper than what we have today, in fact it’s cheaper than a bus ticket in many towns, certainly cheaper than an unsubsidized bus ticket which tends to run $5-$6. Still my hope for robotaxi service is that it makes good transportation more available to everybody, and having it cost more for the poor is a defect.

In addition, as long as damage levels remain low, as a comment points out, perhaps the added cost on every ride would be small enough that you don’t need worry about this for poor or rich. (Though having no cost to doing so does mean more spilled food, drink and sadly, vomit.)

Reputation

Over time, fortunately, poor riders could develop reputations for treating vehicles well. Build enough reputation and you might have access to the same fleet and prices that the middle class do, or at least much cheaper insurance. Cause a problem and you might lose the reputation. It would be possible to build such a reputation anonymously, though I suspect most people and companies would prefer to tie it to identity, erasing privacy. Anonymous reputations in particular can be sold or stolen which presents an issue. One option is to tie the reputation to a photo, but not a name. When you get in the car, it would confirm you match the photo, but would not immediately know your name. (In the future, though, police and database companies will be able to turn the photo into a name easily enough.)

Poor riders would still have to pay more to start, probably, or suffer the other indignities of the lower class ride. However, a poor rider who develops a sterling reservation might be able to get some of that early surcharge back later. (Not if it’s insurance. You can’t get insurance back if you don’t use it, it doesn’t work that way!)

It could also be possible for the poor to get friends to vouch for them and give them some starter reputation.

Unfortunately, poor who squander their reputation (or worse, just ride with friends who trash a car) could find themselves unable to travel except at high cost they can’t afford. It could be like losing your car.

The government

The government will have an interest in making sure the poor are not left out of this mobility revolution. As such, there might be some subsidy program to help people get going, and a safety net for loss of reputation. This of course comes with a cost. Taxes would pay for the insurance to fix cars that are damaged by riders unable to be held accountable.

The alternative, after all, is needing to continue otherwise unprofitable transit services with human drivers just for the sake of these people who can’t get private robocar rides. Transit may continue (though without human drivers) at peak times, but it almost surely vanishes off-peak if not for this.  read more »

How would a robocar handle an oncoming tsunami?

Recently a reddit user posted this short video of an amazingly lucky driver in Japan who was able to turn his car around just in time to escape the torrent of the tsunami.

The question asked was, how would a robocar deal with this? It turns out there are many answers to this question. For this particular question, as you’ll see by the end, the answer is probably “very well.”

Let’s start with the bad news. On its own, built in a world where few thought about tsunamis, there is a good chance the vehicle would not handle it well. The instinct for most developers is to be conservative and cautious when facing an unknown situation. The most cautious thing is to do nothing, to just stop and perhaps ask for help from a person in the car or a remote center. Usually if you don’t understand the situation, doing something is much riskier than doing nothing. Usually — but clearly not here.

This situation might be viewed as similar to something you might expect a car to have programming for — something is approaching fast towards you. Cars will probably have logic to deal with a car coming the wrong way down their lane, and this looks a bit like that. It’s actually stuff coming in both lanes. We can imagine the car might have logic to attempt to retreat in that situation, though this isn’t going to look too much like anything the sensors have seen before. With 3D sensors, though, it will be clear that something huge is coming fast. And with a map of what the road should look like, you will easily tell the wall of water and debris from what you should be seeing.

The best reason the car might handle this however, is the very existence of this video, and the posts about it — including this blog post here. The reason is that the developers of robocars, in order to test them, are busy building simulators. In these simulators they are programming every crazy situation they can think of, even impossible situations, just to see what each revision of the car software will do. They are programming every situation that their cars have encountered on the road. Every situation that caused their software to make an error, or anybody else to make an error.

In other words, if you can think of it after a little bit of thinking, they probably thought of it too. And if it’s in blog posts and famous news stories, they probably heard about it. Flooding and every kind of strange weather ever reported. The details of every accident from every police report that can be turned into a simulation. Earthquakes. Tornadoes. Hurricanes. Alien invasions. Oncoming tanks. If you can think of it without a major effort, and it seems like it could happen, they will put it in. And so every car will indeed be tested. In fact, the developers will probably have fun with the really strange situations which are so rare that they may not have commercial or safety justification, but still are interesting. Scenes from movies. James Bond car chases. You name it.

In this particular case, there is another thing to help with this situation. Tsunamis don’t happen by surprise, not any more. The world, having seen them like this, now has earthquake detection and tsunami warning everywhere robocars are likely to go in the near future. The warnings will be transmitted along the same data stream warning cars about traffic, weather and road conditions. We even have maps of the terrain and can even predict what areas are low and which areas cars should head to in the event of a tsunami warning, and they will take routes designed to avoid risk. With superhuman knowledge, they will not panic and do much better than people at taking the route to high ground, and so they odds of them confronting the wall of water would be very slim, unless there was no choice. The robocar simply would not have been going down that road the way the Japanese driver was.

Now we get to a final special ability of robocars — they will be just as capable in reverse gear as they are going forward, other than due to the speed limitations of reverse gear. So while you reverse timidly, a robocar need not do so. It will be able to pull off the fastest 3 point turn you can imagine if it wants to, or even just escape in reverse. Of course if it needs more speed than reverse offers, it would turn around in the best spot to do so. Stanford has even done a lot of research on drifting, and this will go into simulators too, so cars will probably know how to turn around as fast as a stunt driver if they have to. Electric cars may be able to go as fast in reverse as they can going forward to top it all off. (I should note that not all car designs feature sensors that see the same forward and back, so this may not be true for all vehicles, but all vehicles that can reverse at all need not be timid about it the way people are.)

So for this situation, and anything else we know about, robocars should do a superhuman job. That doesn’t mean there aren’t things nobody ever thought of. But the more videos and stories like this that get recorded, the less and less probable unknown events will be, and thus an unknown event where the software does the wrong thing becomes not impossible, but very low probability.

What is the optimum group vehicle size?

My recent article on a future vision for public transit drew some ire by those who viewed it as anti-transit. Instead, the article broke with transit orthodoxy by suggesting that smaller vehicles (including cars and single person pods) might produce more efficient transit than big vehicles. Transitophiles love big vehicles for reasons beyond their potential efficiency, so it’s a hard sell.

Let’s look at the factors which determine what vehicle size makes the best transit.

Before the robocar future arrives, vehicle size is partly dominated by the need for drivers. Consider a bus route which could have one 40 person bus every 30 minutes or a 20 person bus every 15 minutes. The smaller vehicles have the same capacity, and but they will use a little more energy, a little more road space and cost somewhat more to buy. This leads to the intuition that bigger must be better.

At the same time the smaller vehicles need twice as many drivers. Labour is more than half the operating budget of many transit agencies. Look at the Chicago Transit Authority and you see labour listed as 69% — and much labour is actually in other subcontractor categories — while fuel and electricity are only 7% — the capital costs like vehicles are not even included here. Needing twice the drivers dominates the equation.

Riders of course would have an easy time deciding. They would of course love having vehicles every 15 minutes! Indeed they would be very pleased to get a 7 person van every 5 minutes if they could, the difference would be qualitative, not just quantitative, because when you get to that frequency you start thinking about it more like a car. In addition, the 2 small vehicles do about 1/8th the damage to the road as the one large vehicle.

Dolmu?

Taking the cost of drivers out, what is the optimum size? More to the point, what provides the optimum balance between rider demand (which would love more frequent service in smaller vehicles) and efficiency (which pushes for larger vehicles, up to a point?) In particular, more smaller vehicles does not just have to mean more frequent service on one route, it can also mean more routes. More routes can both mean getting places you could not get to before, and also getting there faster because you don’t need as many transfers.

Here’s where big vehicles are better:

  • When near full, or overfull, they use:
    • Less energy per passenger-mile
    • Less road space per passenger
    • Less vehicle cost (depreciation, maintenance etc.) per passenger
  • Less frequent service forces people to bunch their travel together with others, allowing the advantages above.
  • Fewer stops also forces people to bunch together, to live near transit and to walk more.

Here are some of the advantages of more, smaller vehicles

  • As noted, road damage is roughly as the 4th power of vehicle weight per axle.
  • More frequent and/or ubiquitous service as described above
  • Less likely to be lightly loaded (smaller vehicle is sent when demand is light.)
  • When lightly loaded, much more efficient in all factors than large vehicle
  • While the whole fleet takes more total road space than the large vehicles, each vehicle causes much less obstruction of traffic.
  • Able to use smaller bus-stops and navigate tighter turns and narrower roads.
  • Able to park in smaller spaces including many lots for cars (though still taking as much or slightly more total space.)
  • Stops are sometimes fewer, and take less time (fewer people getting on/off any given vehicle.)
  • Each vehicle is considerably less expensive.

The big trade-off comes because the load varies. The full 40 person bus is an efficiency and cost win over two full 20 person buses (or 10 full 4 person cars) but not as much of a win as you might imagine. But the real question involves the frequent issue of a half-full 40 person bus vs. a full 20 person bus. In this case, the smaller vehicle is quite a bit more efficient. Even worse is the 1/4 full 10 person bus vs. the half full 20 person bus or 3 4-person cars. Here the winner is probably the cars, and this is important, because the average bus in the USA actually has just under 10 people on it.

The ideal situation would be to send out a fleet of 40 or even 60 person buses at the peak of rush hour, and then put those in garages, and send out small buses during the off-peak takes and just cars in the off-off-peak times like the night. Have every vehicle run as close to full as possible and you get your greatest efficiency. This is not an option for a few reasons:

  • To do that with buses, you must lower frequency to keep them full, and riders will reject that
  • Agencies usually can’t afford huge fleets of large vehicles as well as huge fleets of medium vehicles to keep the large vehicles idle for most of the day. They are better off choosing with a loss of efficiency.

In the robocar world, they will be able to call upon a large fleet of small vehicles (cars for 1-4 people) at all times and they won’t need to own them. But the transit companies and agencies still must own these larger (8 to 60) person vehicles.

In some cities, it may be practical to keep a fleet of large vehicles for use only at rush hour. In fact, that’s what some commuter train lines use, and they are the most efficient transportation lines in the USA. The rush-hour-only commuter trains run full out to the suburbs, spend the night in the suburbs and run full back into town. That’s really efficient. The commuter trains with daytime service are not nearly as good. Train lines that can drop cars off-peak get a win here as well.

How practical it is depends on how long you need the big bus to last. Transit vehicles tend to be robust, heavy and expensive, and they are well maintained to maximize their lifetime. A bus that only works rush hour will last more years than one that works all day. The problem is it may last too many years, to the point that it becomes obsolete or wears out from time rather than just miles. Leaving vehicles idle also means tying up capital for longer, so even if you find a good schedule for depreciation of the vehicles, the cost of money makes it difficult to have two or three different fleets.

So in the end, cities have to choose. Because of the labour cost of drivers, they almost always choose the bigger vehicles. Without that cost, the advantages of the smaller vehicles win out because of the variability of load. If the line regularly runs low-load vehicles, it has chosen a size that is larger than optimal.

This is all general analysis. The next step I would like to see from the transportation research community is to build these models with the actual numbers from real transit systems. For each city, for each route, the optimal size will be different. And of course, the existence of the robocars will change demand, which also changes load. They can change demand down (by being a superior solution) or up (by making it easier to get to the shared vehicle.) They can also replace the big vehicles entirely at off-peak times. That sounds like competition, but it actually can be enabling. One reason transit agencies run their big vehicles all day long (erasing their efficiency) is that riders want assurance they can come in at rush hour and then decide to leave early or late. Thus there has to be off-peak service. If riders can be assured that something else (like a robotic taxi or even an Uber) can get them home inexpensively off-peak, they are more willing to take the transit in.

Indeed, it could make sense for transit agencies to say, “we will have low service after 8pm, but if you can show you rode with us in the morning, we will subsidize a private car for you after hours 10 times a month.” They might actually save money by offering this rather than running a mostly empty bus.

comma.ai's neural network car and the hot new technology in robocars

Perhaps the world’s most exciting new technology today are deep neural networks, in particular the convolutional neural networks such as “Deep Learning.” These networks are conquering some of the most well known problems in artificial intelligence and pattern matching, and since their development just a few years ago, milestones in AI have been falling as computer systems that match or surpass human capability have been demonstrated. Playing Go is just the most recent famous example.

This is particularly true in image recognition. Over the past several years, neural network systems have gotten better than humans at problems like recognizing street signs in camera images and even beating radiologists at identifying cancers in medical scans.

These networks are having their effect on robocar development. They are allowing significant progress in the use of vision systems for robotics and driving, making those progress much faster than expected. 2 years ago, I declared that the time when vision systems would be good enough to build a safe robocar without lidar was still fairly far away. That day has not yet arrived, but it is definitely closer, and it’s much harder to say it won’t be soon. At the same time, LIDAR and other sensors are improving and dropping in price. Quanergy (to whom I am an advisor) plans to ship $250 8-line LIDARS this year, and $100 high resolution LIDARS in the next couple of years.

The deep neural networks are a primary tool of MobilEye, the Jerusalem company which makes camera systems and machine-vision ASICs for the ADAS (Advanced Driver Assistance Systems) market. This is the chip used in Tesla’s autopilot, and Tesla claims it has done a great deal of its own custom development, while MobilEye claims the important magic sauce is still mostly them. NVIDIA has made a big push into the robocar market by promoting their high end GPUs as the supercomputing tool cars will need to run these networks well. The two companies disagree, of course, on whether GPUs or ASCICs are the best tool for this — more on that later.

In comes comma.ai

In February, I rode in an experimental car that took this idea to the extreme. The small startup comma.ai, lead by iPhone hacker George Hotz, got some press by building an autopilot similar in capability to many others from car companies in a short amount of time. In January, I wrote an introduction to their approach including how they used quick hacking of the car’s network bus to simplify having the computer control the car. They did it with CNNs, and almost entirely with CNNs. Their car feeds the images from a camera into the network, and out from the network come commands to adjust the steering and speed to keep a car in its lane. As such, there is very little traditional code in the system, just the neural network and a bit of control logic.

Here’s a video of the car taking us for a drive:

The network is built instead by training it. They drive the car around, and the car learns from the humans driving it what to do when it sees things in the field of view. To help in this training, they also give the car a LIDAR which provides an accurate 3D scan of the environment to more absolutely detect the presence of cars and other users of the road. By letting the network know during training that “there is really something there at these coordinates,” the network can learn how to tell the same thing from just the camera images. When it is time to drive, the network does not get the LIDAR data, however it does produce outputs of where it thinks the other cars are, allowing developers to test how well it is seeing things.

This approach is both interesting and frightening. This allows the development of a credible autopilot, but at the same time, the developers have minimal information about how it works, and never can truly understand why it is making the decisions it does. If it makes an error, they will generally not know why it made the error, though they can give it more training data until it no longer makes the error. (They can also replay all other scenarios for which they have recorded data to make sure no new errors are made with the new training data.)  read more »

The future of transit is self-driving medium sized vehicles with no fixed routes or schedules

Most of our focus these days is on self-driving personal cars. In spite of that focus, the effects on mass transit will also be quite dramatic, in ways far beyond taking the driver out of the bus. Indeed, for various reasons, I believe traditional approaches to mass transit (large vehicles on fixed routes and schedules, sometimes with private right-of-way) will be obsoleted by robocar technology, and that the result will be almost 100% good — transportation that is better, faster, more convenient and even more sustainable. (The latter shocks people, who think that anything with small vehicles is inherently less energy efficient.)

I have a new special article on Robocars.com outlining potential visions for the future of transit, and what they might mean. The vision is a work in progress, but I invite debate.

Click for The Future of Mass Transit

The math says we probably make a lot more robocars -- maybe

I frequently see people claim that one effect of robocars is that because we’ll share the cars (when they work as taxis) and most cars stay idle 95% of the time, that a lot fewer cars will be made — which is good news for everybody but the car industry. I did some analysis of why that’s not necessarily true and recent analysis shows the problem to be even more complex than I first laid out.

To summarize, in a world of robotic taxis, just like today’s taxis, they don’t wear out by the year any more, they wear out by the mile (or km.) Taxis in New York last about 5 years and about 250,000 miles, for example. Once cars wear out by the mile, the number of cars you need to build per year is equal to:

Total Vehicle Miles per year
Avg Car Lifetime in Miles

As you can see, the simple equation does not involve how many people share the vehicle at all! As long as the car is used enough that the car isn’t junked before it wears out from miles, nothing changes. It’s never that simple, however, and some new factors come into play. The actual model is very complex with a lot of parameters — we don’t know enough to make a good prediction.

People travel more in cars.

It’s likely that the number of miles people want to travel goes up for a variety of reasons. Robocars make car travel much more pleasant and convenient. Some people might decide to live further from work now that they can work, read, socialize or even sleep on the commute. They might make all sorts of trips more often. Outside of rush hour, they might also be more likely to switch from other modes, such as public transit, and even flying. Consider two places about a 5 hour drive apart — today flying is going to take just under 3 hours due to all the hassles we’ve added to flying, even with the improvements robocars make to those hassles. Many might prefer an uninterrupted car ride where they can work, watch videos or sleep.

Vehicles run empty to reposition

Regular taxis have wasted miles between rides. Indeed, a New York taxi has no passenger 38% of the time. Fortunately, robocars will be a lot more efficient than that, since they don’t need to cruise around looking for rides. Research suggests a more modest 10% “empty mile” cost, but this will vary from situation to situation. If you need the robotaxi fleet to constantly run empty in the reverse commute direction, it could get worse. Among those who believe robocars will be more personally owned than used as taxis, we often see a story painted of how a household has a car that takes one person to work, and returns home empty to take the 2nd person, and then returns again to take others on daytime errands. This is possible, but pretty inefficient. I think it’s far more likely that in the long term, such families will just use other taxi services rather than have their car return home to serve another family member.

Cars last longer

The bottom part of the equation is likely to increase, which reduces the number of cars made. Today, cars are engineered for their expected life-cycle — 19 years and 190,000 miles in California, for example. Once you know your car is going to have a high duty cycle, you change how you engineer it. In particular, you combine engineering of parts for your new desired life cycle with specific replacement schedules for things that will wear out sooner. You want to avoid junking a car with lots of life in the engine just because the seats are worn out, so you make it easy to replace the seats, and you have the car bring itself to a service center where that’s fast and easy.  read more »

GM buys "Cruise" for $1B

General Motors has purchased “Cruise,” a small self-driving startup in San Francisco. Rumours suggest the price was over one billion dollars. In addition, other rumours have come to me suggesting that at least one other startup has been seeking a new round of funding at that valuation, but did not succeed due to the market downturn.

I gave Cruise some small assistance when they were getting started, and wrote about them when they showed off their first prototype. Since then, Cruise, as expected, moved away from highway autopilot retrofit into making a proper robocar, and their test Leaf has been running around SF with 4 velodyne LIDARs and other sensors for a while.

Even in my wildest dreams, I did not imagine startup valuations this high, this soon. (Time to get my own startup going.) Let’s consider why:

First, GM, as the world’s 2nd largest car company, is way behind on robocars. They were one of the first companies to announce a highway autopilot (called, ironically, “Super Cruise”) for the 2014 Cadillac. However, they quickly pulled back on that announced, and for the last few years have continued to delay it, recently announcing it would not even appear in the 2017 car, even though Mercedes, Tesla and several other companies had products like that.

GM’s main academic partner was CMU. They sponsored Boss, the CMU team that won the Darpa Urban Challenge, headed by Chris Urmson (who now leads the Google car project.) Recently, Uber moved into Pittsburgh in a big way and poached many of the top people from CMU for their project. This left GM with very little, a poor position for the world’s 2nd largest car company.

Next, we have Kyle Vogt, founder of Cruise. Kyle was on the founding team for justin.tv, and also for Twitch, which had a billion dollar acquisition — in other words, Kyle is not precisely hurting for money. He has not confirmed this to me, but I suspect when GM showed up at his door, he was not interested in joining a big car company, and his resources meant he was not in any hurry. I then presume GM took that as negotiation and bumped the price to where you would have to be crazy to say no.

GM will let cruise be independent, at least for now. That’s the only sane path. We’ll see where this goes.

Google's crash is a very positive sign

Reports released reveal that one of Google’s Gen-2 vehicles (the Lexus) has a fender-bender (with a bus) with some responsibility assigned to the system. This is the first crash of this type — all other impacts have been reported as fairly clearly the fault of the other driver.

This crash ties into an upcoming article I will be writing about driving in places where everybody violates the rules. I just landed from a trip to India, which is one of the strongest examples of this sort of road system, far more chaotic than California, but it got me thinking a bit more about the problems.

Google is thinking about them too. Google reports it just recently started experimenting with new behaviours, in this case when making a right turn on a red light off a major street where the right lane is extra wide. In that situation it has become common behaviour for cars to effectively create two lanes out of one, with a straight through group on the left, and right turners hugging the curb. The vehicle code would have there be only one lane, and the first person not turning would block everybody turning right, who would find it quite annoying. (In India, the lane markers are barely suggestions, and drivers — which consist of every width of vehicle you can imagine) — dynamically form their own patterns as needed.)

As such, Google wanted their car to be a good citizen and hug the right curb when doing a right turn. So they did, but found the way blocked by sandbags on a storm drain. So they had to “merge” back with the traffic in the left side of the lane. They did this when a bus was coming up on the left, and they made the assumption, as many would make, that the bus would yield and slow a bit to let them in. The bus did not, and the Google car hit it, but at very low speed. The Google car could have probably solved this with faster reflexes and a better read of the bus’ intent, and probably will in time, but more interesting is the question of what you expect of other drivers. The law doesn’t imagine this split lane or this “merge.” and of course the law doesn’t require people to slow down to let you in.

But driving in so many cities requires constantly expecting the other guy to slow down and let you in. (In places like Indonesia, the rules actually give the right-of-way to the guy who cuts you off, because you can see him and he can’t easily see you, so it’s your job to slow. Of course, robocars see in 360 degrees, so no car has a better view of the situation.)

While some people like to imagine that important ethical questions for robocars revolve around choosing who to kill in an accident, that’s actually an extremely rare event. The real ethical issues revolve around this issue of how to drive when driving involves routinely breaking the law — not once in a 100 lifetimes, but once every minute. Or once every second, as is the case in India. To solve this problem, we must come up with a resolution, and we must eventually get the law to accept it the same what it accepts it for all the humans out there, who are almost never ticketed for these infractions.

So why is this a good thing? Because Google is starting to work on problems like these, and you need to solve these problems to drive even in orderly places like California. And yes, you are going to have some mistakes, and some dings, on the way there, and that’s a good thing, not a bad thing. Mistakes in negotiating who yields to who are very unlikely to involve injury, as long as you don’t involve things smaller than cars (such as pedestrians.) Robocars will need to not always yield in a game of chicken or they can’t survive on the roads.

In this case, Google says it learned that big vehicles are much less likely to yield. In addition, it sounds like the vehicle’s confusion over the sandbags probably made the bus driver decide the vehicle was stuck. It’s still unclear to me why the car wasn’t able to abort its merge when it saw the bus was not going to yield, since the description has the car sideswiping the bus, not the other way around.

Nobody wants accidents — and some will play this accident as more than it is — but neither do we want so much caution that we never learn these lessons.

It’s also a good reminder that even Google, though it is the clear leader in the space, still has lots of work to do. A lot of people I talk to imagine that the tech problems have all been solved and all that’s left is getting legal and public acceptance. There is great progress being made, but nobody should expect these cars to be perfect today. That’s why they run with safety drivers, and did even before the law demanded it. This time the safety driver also decided the bus would yield and so let the car try its merge. But expect more of this as time goes forward. Their current record is not as good as a human, though I would be curious what the accident rate is for student drivers overseen by a driving instructor, which is roughly parallel to the safety driver approach. This is Google’s first caused accident in around 1.5M miles.

It’s worth noting that sometimes humans solve this problem by making eye contact, to know if the other car has seen you. Turns out that robots can do that as well, because the human eye flashes brightly in the red and infrared when looking directly at you — the “red eye” effect of small flash cameras. And there are ways that cars could signal to other drivers, “I see you too” but in reality any robocar should always be seeing all other parties on the road, and this would just be a comfort signal. A little harder to read would be gestures which show intent, like nodding, or waving. These can be seen, though not as easily with LIDAR. It’s better not to need them.

Uber, Lyft and crew should replace public transit at night

I have a big article forthcoming on the future of public transit. I believe that with the robocar (and van) it moves from being scheduled, route-based mass transit to on-demand, ad-hoc route medium and small vehicle transit. That’s in part because of the disturbingly poor economics of current mass transit, especially in the USA. We can do much better.

However, long before that day, there is something else that could be done. Many mass transit systems shut down at night. Demand is low, and that creates a big burden for the “night people” of the world, who are left with taxis and occasional carpooling, or more limited night bus service.

I think transit agencies should make a deal with companies like Uber to operate their carpool services (UberPool and LyftLines) during transit closure hours, and subsidize the rides to bring them down equal to, or closer to a transit ticket. This could also be the case for other seriously off-peak times, like weekends and holidays.

Already the typical transit ticket in the USA is heavily subsidized. The real cost of providing a transit ride is much higher. In the transit-heavy cities, fares pay about 50-60% of operating cost, but in some cities it’s only 15-20%. The US national average is around 33%. And that’s just operating cost, it does not include the capital costs in many cases. One thing that pushes the number the wrong way is operation during off-peak hours on lightly loaded vehicles. So while the average ride may cost $6 to provide, it can be more at night. Already the mobile-summoned based carpools are close to that price. (For promotions, they have actually gotten to less. They also subsidize to get going, though.)

There are some big issues. First, not everybody has a smartphone, a data plan or even a phone. You need a method for those without them to summon a ride. You could start with an 800 number so any phone (or the few remaining payphones) could summon a ride. You could also make mini-kiosks by building a protective case and putting a surplus tablet at every subway stop and many bus stops.

Another issue is that these services, particularly the carpool versions, depend on not having anonymous riders. People feel much safer about carpooling with strangers if those strangers can be identified if there is a problem. Transit riding is anonymous, and should be. The solutions to this are challenging. On top of all this, riding in a mobile-hail car is never paid for with cash, and the drivers are not going to accept cash. At the least, this means you would need to provide tickets that people buy (from machines at stations or in advance) which the driver can scan with their phone. So no just deciding to take a ride with cash. Transit cards are an other issue, though there is no requirement that they work, because at least at first, this service is meant for hours when the transit was not even running, so it’s OK if it’s an extra cost.

Dolmu? Finally, there is the issue that this is too good. A ride in a private car vs. a late night transit bus, for the price of a bus? People will over-use it, and that would of course get the Taxis angry, though there is no reason they could not participate as they are all going to supporting mobile-app hail. But the subsidy may be too expensive if people over use it.

One solution to that is to only allow it to take you between transit stops. Even that’s “too good” in that it may be faster than the transit, and much faster if the trip involved changes, especially changes during limited service times. You could get extreme and only allow it between limited sets of stops, or require 2 rides (for the same price) to simulate having to change lines. This also makes carpooling much easier, as the drivers would mostly end up cruising close to the transit lines. IF they do it in vans it could be quite efficient, in fact.

We probably don’t need to go that far in limiting it, but we could. You could tune the ease and quality of the service so the demand is what you expect, and the subsidy affordable. And the ride companies could actually use this as a way to gain extra revenue. They could offer you a door to door ride with a subsidy for the portion that would have been along the transit line. For example, today you can take Uber to the subway station, ride the subway for $2 and then take Uber from the end station to your destination, and that can be cheaper than just taking the Uber directly. This ride could be offered at some subsidized price and keep up the volume. The taxi companies can either get into the 21st century and play, or not compete.

Aside from improving transit service (by making it 24 hours) this also lets us experiment with the future world of ad-hoc demand based public transportation, when we get to the future where the vans are driving themselves. More on that to come.

Low clearance underpasses for small robocars

I recently read a report of a plan for a new type of intersection being developed in Malaysia, and I felt it had some interesting applications for robocars.

The idea behind the intersection is that you have a traditional intersection, but dig in one or both directions, a special underpass which is both shallow and narrow. One would typically imagine this underpass as being 2 vehicles wide in the center of the road but other options are possible. The underpass might be very shallow, perhaps just 4 to 5 feet high.

The underpass is available only to vehicles which fit, which is to say ordinary height passenger cars or even just ordinary height half-width vehicles. Big vehicles such as SUV, vans, trucks etc. would not use the underpass, and instead use the at-grade intersection, where you would have traffic signals or stop signs.

Why is this such a good idea? It’s vastly cheaper to make such an underpass. Because it’s so shallow, it is cheap to dig and shore up the walls. You can start the downramp much closer to the intersection because you don’t need to go so far down. It’s a tiny fraction of the cost of a regular overpass or underpass which requires lots of space to go up and down, and must be high enough for big trucks to pass underneath. Not so here, as trucks never go under it.

The downramp could begin a very short distance from the intersection, or it could begin further out to allow for a longer tunnel, such space now dedicated to the left turn lanes. (Or the right turn lanes if the tunnels are on the outside rather than center of the road.)

The center has the advantage of only digging one tunnel for both directions and providing that space for the left-turn lane. The downside is you have this physical tunnel entrance with protective bollards in the middle of a road, which may present some risk — though there are many places where there are tunnel entrances in the middle of roads, but they are full sized. Indeed we have intersections like this in full sized mode, including on Geary St. in San Francisco. The alternative on the edges requires two trenches and puts the obstacles to the side, mixing straight-through underpass traffic with right turning traffic.

Cars small enough to use the tunnels would get a transponder to signal their ability, possibly to raise a gate. In addition, a camera system would detect any too-large vehicle trying to enter the tunnel and do whatever it can to stop it. In the end, a too-large vehicle would end up hitting soft barriers if it failed to stop or divert. (Most parking lots today have hanging barriers to let vehicles know they won’t fit.)

Now the small, light vehicles, such as the one-person robocars, could bypass the traffic lights if they are red. They might get an “express” lane that is just for them which goes through these underpasses so it’s a smooth ride all along the road, other than the ups and downs.

Robocars would have a better time knowing where they fit and letting the intersection know they fit. More to the point, their ability to drive “on rails” would allow a wider robocar to go down a narrower tunnel, keeping a tiny margin that a human driver could never handle. Human driven vehicles would need to be narrower if they used these tunnels.

This would strongly encourage the use of small, lower-height vehicles, which are also very energy efficient. Really strongly — who would want to drive in a big SUV that has to stop at traffic lights when you can go nonstop in a small pod? Of course, you probably still use the light if making a turn. This in turn would cause a drop in vehicle size and congestion, and increase overall road capacity beyond what we get from having no stopping for a large fraction of vehicles.

If you want to get extreme, you could even have just a one lane tunnel if it’s all robocars. The simplest approach would be to have the express lane (with tunnels) only go in the commute direction during rush hour. Off peak, the robocars could pace their trips in pulses so that they alternate what direction they move through the underpass. On a north-south road, you could imagine during the red lights having 15 cars northbound, then 15 cars southbound back and forth until the light is green and you allocate the tunnel to the most popular direction. Humans could not obey this easily but robots could.

This works best when one of the roads intersecting is bigger than the other, since it’s harder to have both routes get an underpass. You could have one take a deeper underpass — at 10’ deep under a 5’ deep one, it’s still not nearly as deep as a full road underpass. Or with all robocars, you could have the robots alternate through the underground intersection at full speed under computer control. People have built computer modules of this “reservation” style intersection for many years, but they never could solve the problem that not every car in an intersection is a trustable robocar, and as such, you can never make an intersection like this. If all cars are robocars, an underground at-grade intersection could easily allow traffic to flow on both routes, in both directions, with proper timing. Since you would not see the other vehicles coming it might not even be as scary.

I think these underpasses would pay for themselves in the increase in road efficiency they would generate, but if not, you could also require a toll to use them. I think a lot of people would pay a modest toll to have no red lights on their trip. Since all you need do is dig a shallow trench, shore up the walls, and cover it with metal plates or similar, it’s a completely different scale of problem from a real underpass. Without too much money, every major road could become a non-stop robocar road.

You can, of course, create more capacity by building full elevated guideways only for use by small, light vehicles. These are again, much cheaper to build than full roads that can handle heavy trucks, and they take up only pillar space so they can be run down the center of many roads. They still need to be up high enough for big vehicles to go under them. Aside from the cost, the big issue is how they change the built environment, blocking out the sun and putting vehicles running in front of the 2nd or 3rd floor of buildings and houses. This is like a PRT plan but you only need to build these in the most congested zones.

There isn’t a lot of details on these plans, but I read about them at Reason’s Surface Transportation newsletter.

The Electric Car may be entering its "cell phone" period

I’ve been electric car shopping, but one thing has stood out as a big concern. Many electric cars are depreciating fast, and it may get even faster. I think part of this is due to the fact that electric cars are a bit more like electronics devices than they are cars. Electric cars will see major innovation in the next few years, as well as a decline in their price/performance of their batteries. This spells doom for their value. It’s akin to cell phones — your 2 year old cell phone still functions perfectly, but you dispose of it for a new one because of the pace of innovation. Electric cars are not at that pace, but they are skirting the phenomenon.

When it comes to Robocar, I remind people that the computer will be the most important part of the car, not the engine or other features. And the computer and software are on the Moore’s Law curve, like your phone. The battery system is not like this, but digital features are becoming more and more important parts of every car.

The most obvious cause of the big depreciation is not related to the cars. There is a $7500 federal tax rebate on a new electric car, so the moment you drive it off the lot, its blue book value drops an additional $7500. In addition, different states offer credits from of up to $5,000, and unless you take the car out of state, that amount will also drop off the value. This is the primary culprit for the huge depreciation numbers, but there is more.

Perversely, people with higher incomes don’t get California’s $2,500 credit, so for them, buying used is a very wise idea, because somebody else got the credit, and it’s reflected in the price of the car. Of course, if you are rich enough, you may tolerate paying $2,500 more than everybody else for the new car. In fact, if not for the sales tax, it would be a good strategy to get somebody else to buy a car for you and get the credit, then buy it from them. Or take over a lease (getting to that…)

There are rumours that vendors might even be trying to subsidize against this depreciation to avoid a collapse in the price of their cars. After all, such low used car value discourages confidence in the car (and steals away buyers of new cars.) Rumours suggest Nissan has been known to offer incentives to get people to keep their lease-returns rather than take them back, and there are stories of even Teslas getting low prices at auction, though in the retail market they have actually done pretty well.

The Leaf is the most popular electric car, and only it and the Tesla are real market cars from big players. The other cars are all “compliance” cars, made by companies who must meet quotas of green vehicles. The 2015 Leaf has a cited range around 80 miles, and users report a real range on the highway closer to 60 miles. For me, that means a car that can’t take me to San Francisco and back. The Leaf would handle a large fraction of my trips around Silicon Valley, but not being able to go to SF is a major detriment in this town. So I decided not to get a 2015 Leaf.

Better cars keep getting pre-announced

That decision was magnified when Nissan announced the 2016 Leaf would be able to do 107 miles. Technically, that’s enough for the San Francisco trip, though in reality it’s just on the edge. Any charging would allow the trip, including a 5 minute (“gas pump” level) stop at a DC supercharger (if nobody else is using it.) So I was waiting for that car to come out when…

They announced the Chevy Bolt, a $30K car (after rebate) with a 200 mile range. Finally a reasonably priced car with enough range. And then rumours circulated of a similar range in the 2017 Leaf — it needs to if it will compete, and so every other car needs to as well. Who will buy a 100 mile 2016 car when a 200 mile 2017 car for not much more is being promoted?

Of course, in a year, something even more appealing than the Bolt will be announced. While the Bolt’s range is enough for 99% of my drives (leaving out only Lake Tahoe and road tripping) there is still much that can improve — other parts of the car, the electronics, and of course the battery pack getting even cheaper at that range.

Every year, cars get a little bit better, but we’re in for a period of about 5 years in electric cars where each new year is a lot better, and that’s trouble for people trying to sell them if the customers figure that out. A cell phone is cheap enough to throw out after 2 years. A car is not. To top it off, in a few years the robocar features will start getting more serious (starting with the first no-supervision traffic jam assist) and so other parts of the car will also be on the Moore’s Law curve.

The battery is probably not on that curve, but it’s on a good one. The Bolt’s 200 mile range is a result of an expected reduction of battery cost from $500/kwh a couple of years ago to $200/kwh by 2020, and that’s without any breakthroughs or new chemistry. (It is speculated the Bolt’s battery cost will already beat that $200 number.) Breakthroughs — which sometimes come when enough money is pushing the process — could easily do much more.

Robocar answer

Robocars have an answer to this rapid depreciation. If they are used as Taxis, they can survive. The typical New York Taxi drives 62,000 miles each year and wears out in 5 years. Personal cars take 19 years to wear out, and go around 200,000 miles. Robotaxis will wear out and be scrapped after just 5 years, which means it is less of a burden when they are 4 years old and obsolete from a technology standpoint. (We may also design these vehicles to make it easy to give them hardware upgrades so their electronics can keep pace.)

Personal robocars have it harder. Your 4 year old personal vehicle is going to look like crap compared to the new ones. It will get software updates to match them (which is vital) but without hardware updates it will, like an old iPhone, no longer even be able to handle the software updates. If you buy a personal robocar, get one where it’s easy to swap out the hardware, and expect to pay the cost of this.

Wear and tear of electric cars

The battery is the lifeblood of the electric car. No matter how new the rest is, a reduced range is a deal-killer for most buyers. Indeed, some predictions say the rest of the power train should wear out more slowly than traditional cars, so the depreciation is unfair in some ways.

Battery swap is an option on some electric cars, but that’s a big cost to pay over what you planned to pay. Older battery packs will still work, but deliver less range. Owners will salivate for new packs that are cheaper, lighter, fresher and possibly even higher capacity than what they have. That’s all good, but if you buy an electric car with a pack only good for 4 years at today’s prices, you’ve lost all the economies the electric car hopes to give you. Of course, robocars and especially robotaxis can manage their batteries for much longer life

It might make sense to buy a 2012 Leaf for $8,000 and pay $5K to add a battery pack to it that’s brand-new, giving you a car close to matching a new one in certain ways.

With all this, why look at electric cars today? For me, my electricity bill would actually go down due to metering differences, and of course my gasoline bill would drop too. And they are zippy and fun to drive and quite green with California’s (relatively) green energy grid. And because of this depreciation, used ones are a major bargain. The buyers of new cars (and the federal government) took the hit on a new electric, but you can pick up a 2012 Leaf for $8,000. That’s because all those 2012 units are coming off their leases, and people want them a lot less with those fancier models out there. (In addition, it is known the 2012 had some battery life issues fixed in 2013.)

A lot of people are leasing electric cars. Leasing has one financial advantage (you pay sales tax only on the depreciation you take, rather than the whole car) and otherwise it’s a bad idea unless you’re sure the vendor has guessed badly on the residual value of the car after the lease. With electric cars, you take so much of the depreciation that the tax advantage is not so great. But many electric owners are leasing. The $2500 tax credit in California can often pay for the downpayment, making it easy to come up with the money, and owners are, with good reason, willing to let the vendor take the risk on battery decay and mega-depreciation. Vendors are not idiots, though, and so their residual values are low, but perhaps not low enough. Of course, if you know better cars are coming and are sure you only want the car for 2 years, leasing can ease your legwork.

On the other hand, you can sometimes take over the lease of another electric car owner, letting them suffer the “due at signing” downpayment (which often exceeds all the monthly payments on a short lease) and giving you a car for a very short time, which might be a wise choice with all the new vehicles coming down the pipe.

Maintaining Privacy in the Robotaxi

While I’ve been in love for a long time with the idea of mobility-on-demand and the robocar taxi, I continue to have some privacy concerns. The first is simply over the idea that a service company gets a map of all your travels. Of course, your cell phone company, and companies like Google with their Location History (Warning, don’t click or you will be freaked out if you didn’t know about this) know this already, as does the NSA and probably all the other spy agencies in the world. That doesn’t make it much better to add more trackers. The online ride companies like Uber are tracking you too.

It will be sad to lose the anonymous taxi we used to have, where you hailed a cab and paid in cash and no record was made (until cabs got tracklogs and video) of your travels. In my article on Robocars and Privacy written many years ago I outlined some plans for anonymous taxi service and I continue to push this idea.

In the article, I outline the concern that a taxi company will want to be able to photograph the vehicle when you’re not in it, to assure you haven’t dirtied or damaged the interior, and also to check if you left something in the vehicle by accident. People will be less comfortable with a camera that can be turned on all the time, and LEDs to inform you if a camera is on can’t really be trusted, so we want to have a physical shutter.

This led me to a simple solution: The physical shutter on the camera could be the switch by which you signal the start and end of a ride. The ride can’t begin until you close the physical shutter, and it doesn’t close out until you open it. You want a lever for the shutter on the outside of the car by the main passenger door, so you can open and close it when you are not in the car, so it doesn’t take a picture of you if you are trying to use an anonymous taxi. A connected lever inside could allow people who are not trying to be anonymous (but rather just private on their journey) to both control the shutter, and signal the car to go or conclude the ride.

You might not want to be inside when it takes the photo anyway, because a bright flash would be advised, for a millisecond brighter than the sunlight coming in the car. That way the images will be under the same light, night or day, making it easy to compare before and after images to detect dirt or lost items.

If you leave the car without opening the shutter, it would honk at you, or ding on your phone to remind you to come back and open it.

Cars will likely have some other cameras too, for video conferencing. I expect video conferences to be popular in robocars, and while your own phone can do that for you, a camera with stabilization in it could be a useful idea. Here, we could use a physical shutter, though this time with a remote actuator that makes noise, so you can easily see if it’s open. Even more simply, the video camera and monitor might not connect to anything in the car, but rather only connect to your phone via a car dock. (The connection must be wired, unfortunately.) If the camera is not connected you can be reasonably confident it’s not spying on you.

Of course, a truly malicious operator could have hidden cameras, or a secret connection to the video conference camera, but there’s not to much you can do about that. What we want protection from are attackers breaking into the car’s system, and vendors who change their mind about your privacy. We also want a stake in the ground that routine surveillance of passengers is not acceptable.

Federal government involvement

NHTSA, the federal car safety agency has been talking about getting into the robocar game for a while, and now declares it wants more involvement with two important details:

  • Unlike California, they are keen on making sure full robocars (able to run unmanned) are part of the regulations, and
  • Their regulations might supersede those of states like California.

In the next six months, the DoT will work with states and others on a unified policy. There are some other details here.

(California, by the way will have hearings in the next couple of weeks on their regulations. I will be out of the state, unfortunately.)

On top of this there is a $4 billion (over 10 years) proposal in the new Obama budget to support and accelerate robocars and (sadly) connected cars.

Perhaps most heartening is a plan to offer reduced regulation for up to 2,500 early deployment vehicles — a way to get companies out there in the field without shackling them first. Public attitudes on robocars have pushed regulators to a rather radical approach to regulation, namely attempting to define regulations before a product is actually on the market, with California even thinking of banning unmanned cars before they arrive. In the normal history of car safety regulation, technologies are built and deployed by vendors and are usually on the road for decades before they get regulated, but people are so afraid of robots that this normal approach may not happen here.

GM Delays super-cruise again

There was a fair bit of excitement when Cadillac announced “super-cruise,” a product similar to what you see in the Tesla autopilot, for the 2014 model year, or so we thought. It was the first effort from a big car company at some level of self-driving, even if minimal. Since then, they’ve kept delaying it, while Mercedes, Tesla and others have released such products. Now they have said it won’t show until at least 2017. GM is quickly dropping in the ranks of active Robocar companies, leaving the U.S. mantle to Tesla and Ford. Chrysler has never announced anything an even ran anti-self-driving-car ads in the Superbowl a few years ago.

Tesla releases “summon” and hints at more

The latest Tesla firmware release offers a “summon” function, so you can train your car to park and come back to you (with a range of 39 feet.) Primary use is to have your car go park itself in the garage, or at a robotic charging station. This didn’t stop Elon Musk from promising we are not very far away from being able to summon the car from very far away.

They have also detailed that those sorts of functions, and other autonomy, will require more sensors than they put in the model S, and that this sensor suite is a few years away, perhaps in time for the model 3

But wait, there’s more…

The pace of news is getting fast. Even I’m having trouble keeping up with everything even though it’s part of my job. This blog will continue to be a place not for all the news, but the news that actually makes a difference, with analysis.

Here are some other items you might find of interest:

Google releases detailed intervention rates -- and the real unsolved problem of robocars

Hot on the heels of my CES Report is the release of the latest article from Chris Urmson on The View from the Front Seat of the Google Car. Chris heads engineering on the project (and until recently led the entire project.)

Chris reports two interesting statistics. The first is “simulated contacts” — times when a safety driver intervened, and the vehicle would have hit something without the intervention:

There were 13 [Simulated Contact] incidents in the DMV reporting period (though 2 involved traffic cones and 3 were caused by another driver’s reckless behavior). What we find encouraging is that 8 of these incidents took place in ~53,000 miles in ~3 months of 2014, but only 5 of them took place in ~370,000 miles in 11 months of 2015. (There were 69 safety disengages, of which 13 were determined to be likely to cause a “contact.”)

The second is detected system anomalies:

There were 272 instances in which the software detected an anomaly somewhere in the system that could have had possible safety implications; in these cases it immediately handed control of the vehicle to our test driver. We’ve recently been driving ~5300 autonomous miles between these events, which is a nearly 7-fold improvement since the start of the reporting period, when we logged only ~785 autonomous miles between them. We’re pleased.

Let’s look at these and why they are different and how they compare to humans.

The “simulated contacts” are events which would have been accidents in an unsupervised or unmanned vehicle, which is serious. Google is now having one once every 74,000 miles, though Urmson suggests this rate may not keep going down as they test the vehicle in new and more challenging environments. It’s also noted that a few were not the fault of the system. Indeed, for the full set of 69 safety disengagements, the rate of those is actually going up, with 29 of them in the last 5 months reported.

How does that number compare with humans? Well, regular people in the USA have about 6 million accidents per year reported to the police, which means about once every 500,000 miles. But for some time, insurance companies have said the number is twice that, or once every 250,000 miles. Google’s own new research suggests even more accidents are taking place that go entirely unreported by anybody. For example, how often have you struck a curb, or even had a minor touch in a parking lot that nobody else knew about? Many people would admit to that, and altogether there are suggestions the human number for a “contact” could be as bad as one per 100,000 miles.

Which would put the Google cars at close to that level, though this is from driving in simple environments with no snow and easy California driving situations. In other words, there is still some distance to go, but at least one possible goal seems in striking distance. Google even reports going 230,000 miles from April to November of last year without a simulated contact, a (cherry-picked) stretch that nonetheless matches human levels.

For the past while, when people have asked me, “What is the biggest obstacle to robocar deployment, is it technology or regulation?” I have given an unexpected answer — that it’s testing. I’ve said we have to figure out just how to test these vehicles so we can know when a safety goal has been met. We also have to figure out what the safety goal is.

Various suggestions have come out for the goal: Having a safety record to match humans. Matching good humans. Getting twice or even 10 times or even 100 times as good as humans. Those higher, stretch goals will become good targets one day, but for now the first question is how to get to the level of humans.

One problem is that the way humans have accidents is quite different from how robots probably will. Human accidents sometimes have a single cause (such as falling asleep at the wheel) but many arise because 2 or more things went wrong. Almost everybody I talk to will agree a time has come when they were looking away from the road to adjust the radio or even play with their phone, and they looked up to see traffic slowing ahead of them, and quickly hit the brakes just in time, narrowly avoiding an accident. Accidents often happen when luck like this runs out. Robotic accidents will probably mostly come from one single flaw or error. Robots doing anything unsafe, even for a moment, will be cause for alarm and the source of the error will be fixed as quickly as possible.

Safety anomalies

This leads us to look at the other number — the safety anomalies. At first, this sounds more frightening. They range from 39 hardware issues and anomalies to 80 “software discrepancies” which may include rarer full-on “blue screen” style crashes (if the cars ran Windows, which they don’t). People often wonder how we can trust robocars when they know computers can be so unreliable. (The most common detected fault is a perception discrepancy, with 119. It is not said, but I will presume these will include strange sensor data or serious disagreement between different sensors.)

It’s important to note the hidden message. These “safety anomaly” interventions did not generally cause simulated contacts. With human beings, the fact that you zone out, take your eyes off the road, text or even in many cases even briefly fall asleep does not always result in a crash for humans, and nor will similar events for robocars. In the event of a detected anomaly, one presumes that independent (less capable) backup systems will immediately take over. Because they are less capable, they might cause an error, but that should be quite rare.

As such, the 5300 miles between anomalies, while clearly in need of improvement, may also not be a bad number. Certainly many humans have such an “anomaly” that often (that’s about every 6 months of human driving.) It depends how often such anomalies might lead to a crash, and what severity of crash it would be.

The report does not describe something more frightening — a problem with the system that it does not detect. This is the sort of issue that could lead to a dangerous “careen into oncoming traffic” style event in the worst case scenario. The “unexpected motion” anomalies may be of this class. (As such would be a contact incident, we can conclude it’s very rare if it happens at all in the modern car.) (While I worked on Google’s car a few years ago, I have no inside data on the performance of the current generations of cars.)

I have particular concern with the new wave of projects hoping to drive with trained machine learning and neural networks. Unlike Google’s car and most others, the programmers of those vehicles have only a limited idea how the neural networks are operating. It’s harder to tell if they’re having an “anomaly,” though the usual things like hardware errors, processor faults and memory overflows are of course just as visible.

The other vendors

Google didn’t publish total disengagements, judging most of them to be inconsequential. Safety drivers are regularly disengaging for lots of reasons:

  • Taking a break, swapping drivers or returning to base
  • Moving to a road the car doesn’t handle or isn’t being tested on
  • Any suspicion of a risky situation

The latter is the most interesting. Drivers are told to take the wheel if anything dangerous is happening on the road, not just with the vehicle. This is the right approach — you don’t want to use the public as test subjects, you don’t want to say, “let’s leave the car auto-driving and see what it does with that crazy driver trying to hassle the car or that group of schoolchildren jaywalking.” Instead the approach is to play out the scenario in simulator and see if the car did the right thing.

Delphi reports 405 disengagements in 16,600 miles — but their breakdown suggests only a few were system problems. Delphi is testing on highway where disengagement rates are expected to be much lower.

Nissan reports 106 disengagements in 1485 miles, most in their early stages. For Oct-Nov their rate was 36 for 866 miles. They seem to be reporting the more serious ones, like Google.

Tesla reports zero disengagements, presumably because they would define what their vehicle does as not a truly autonomous mode.

VW’s report is a bit harder to read, but it suggests 5500 total miles and 85 disengagements.

Google’s lead continues to be overwhelming. That shows up very clearly in the nice charts that the Washington Post made from these numbers.

How safe do we have to be?

If the number is the 100,000 mile or 250,000 mile number we estimate for humans, that’s still pretty hard to test. You can’t just take every new software build and drive it for a million miles (about 25,000 hours) to see if it has fewer than 4 or even 10 accidents. You can and will test the car over billions of miles in simulator, encountering every strange situation ever seen or imagined. Before the car has a first accident it will be unlike a human. It will probably perform flawlessly. if it doesn’t, that will be immediate cause for alarm back at HQ, and correction of the problem.

Makers of robocars will need to convince themselves, their lawyers and safety officers, their boards, the public and eventually even the government that they have met some reasonable safety goal.

Over time we will hopefully see even more detailed numbers on this. That is how we’ll answer this question.

This does turn out to be one advantage of the supervised autopilots, such as what Tesla has released. Because it can count on all the Tesla owners to be the fail-safe (or if you prefer, guinea-pig) for their autopilot system, Tesla is able to quickly gather a lot of data about the safety record of its system over a lot of miles. Far more than can be gathered if you have to run the testing operation with paid drivers or even your own unmanned cars. This ability to test could help the supervised autopilots get to good confidence numbers faster than expected. Indeed, though I have often written that I don’t feel there is a good evolutionary path from supervised robocars to unmanned ones, this approach could make my prediction be in error. For if Tesla or some other car maker with lots of cars on the road is able to make an autopilot, and then observe that it never fails in several million miles, then they might have a legitimate claim on having something safe enough to run unmanned, at least on the classes of roads and situations which the customers tested it on. Though a car that does 10 million perfect highway miles is still not ready to bring itself to you door to door on urban streets, as Elon Musk claimed would happen soon with the Tesla yesterday.

CES 2016 Robocar News

I’m back from CES 2016 with a raft of news, starting with robocars. Some news was reported before the show but almost everybody had something to say — even if it was only to have something to say!

I have many more photos with coverage in my CES 2016 Photo Gallery.

Ford makes strong commitment

Ford’s CEO talks like he gets it. Ford did not have too much to show — they announced they will be moving to Velodyne’s new lower cost 32-laser puck-sized LIDAR for their research, and boosting their research fleet to 30 vehicles. They plan for full-auto operation in limited regions fairly soon.

Ford is also making its own efforts into one-way car share (similar to Daimler Car2Go and BMW DriveNow) called GoDrive, which pushes Ford more firmly into the idea of selling rides rather than cars. The car companies are clearly believing this sooner than I expected, and the reason is very clearly the success of Uber. (As I have said, it’s a mistake to think of Uber as competition for the taxi companies. Uber is competition for the car companies.)

Ford is also doing an interesting “car swap” product. While details are scant, it seems what the service will do is let you swap your Ford for somebody else’s different Ford. For example, if somebody has an F-150 or Transit Van that they know they won’t use the cargo features on some day or weekend, you drive over with your ordinary sedan and swap temporarily for their truck — presumably with a small amount of money flowing to the more popular vehicle. Useful idea.

The big announcement that didn’t happen was the much-rumoured alliance between Ford and Google. Ford did not overtly refute it but suggested they had enough partners at present. The alliance would be a good idea, but either the rumours were wrong, or they are waiting for another event (such as the upcoming Detroit Auto Show) to talk about it.

Faraday Future, where art thou?

The big disappointment of the event was the silly concept racecar shown by Faraday Future. Oh, sure, it’s a cool electric racecar, but it has absolutely nothing to do with everything we’ve heard about this company, namely that they are building a consumer electric car-on-demand service with autonomous delivery. Everybody wondered if they had booked the space and did not have their real demo ready on time. It stays secret for a while, it seems. Recent hires, such as Jan Becker, the former head of the autonomous lab for Bosch, suggest they are definitely going autonomous.

Mapping heats up

Google’s car drives by having super-detailed maps of all the roads, and that’s the correct approach. Google is unlikely to hand out its maps, so both Here/Navteq (now owned by a consortium of auto companies in Germany) and TomTom have efforts to produce similar maps to licence to non-Google robocar teams. They are taking fairly different approaches, which will be the subject of a future article.

One interesting edge is that these companies plan to partner with big automakers and not just give them map data but expect data in return. That means that each company will have a giant fleet of cars constantly scanning the road, and immediately reporting any differences between the map and the territory. With proper scale, they should get reports on changes to the road literally within minutes of them happening. The first car to encounter a change will still need to be able to handle it, possibly by pulling over and/or asking the human passenger to help, but this will be a very rare event.

MobilEye has announced a similar plan, and they are already the camera in a large fraction of advanced cars on the road today. MobilEye has a primary focus on vision, rather than Lidar, but will have lots of sources of data. Tesla has also been uploading data from their cars, though it does not (as far as I know) make as extensive use of detailed maps, though it does rely on general maps.  read more »

Lyft and GM, Sidecar, the nature of competition and CES

Lyft announced a $500M investment from GM with $500M more, pushing them to a $5.4B valuation, which is both huge and just a tenth of Uber. This was combined with talk of a push to robocars. (GM will provide a car rental service to Lyft drivers to start, but the speculation is that whatever robocar GM gets involved in will show up at Lyft.)

With no details, Lyft’s announcement doesn’t really add anything to the robocar world that Uber doesn’t already add. It is GM’s participation that is more interesting, because it’s another car company showing they are not just giving lip service to the idea of selling rides rather than cars. (Mercedes and BWM have also started saying real things in this area.)

My initial expectations for the big car companies were much more bleak for them. I felt that their century long histories of doing nothing but selling cars would impede them from switching models until it was too late. That might still happen, and will happen for some companies, but more might survive than expected. The story also contains some more pure PR comments about OnStar in the new Lyft rental cars. Lyft drivers are all linked in real time with their smartphones; OnStar is obsolete technology, named only to make it seem GM is adding something. GM is not a great robocar leader. They have been very slow even with their highway “super cruise” efforts and the best they have done is partner with Rajkumar at CMU only to find Uber more successful at working with CMU folks.

Sidecar and where are you going?

Also frightening is the news last week of the death of Sidecar. Sidecar was the 3rd place smartphone-hail company after Uber and Lyft, but so distant a third that it decided to shut down. Where Lyft can raise another billion, Sidecar could not get a dime. The CEO is a friend of mine and I’ve been impressed that Sidecar was willing to innovate, even building a successful delivery business on top of the fact that you had to tell Sidecar where you were going. I think it’s important that users say where they are going. It allows much better planning of the use of robocar resources. If customers say where they are going, you can not only do some of the things Sidecar did (deliveries in the trunk the passenger doesn’t even know about, pricing set by drivers, directional goals set by drivers etc.) you can do more:

  • Send short-range cars (electric cars) for short trips
  • Send small (one or two person) cars when there is just one rider
  • Send cars not even capable of the highway if the trip doesn’t involve the highway
  • Pool riders far more efficiently, sometimes in vehicles designed for pooling which have 2-12 private “cabins.”

All of this is important to making transportation vastly more efficient, and in allowing a wide variety of vehicle designs, and a wide variety of power trains. It is only by knowing the destination that many of these benefits can be seen.

Uber lets you enter the destination but does not require it, and people do like having less to do when summoning a vehicle. (I always enter the destination when in places they don’t speak English, it’s a handy way to communicate with the driver.) The driver is not shown the destination until after they pick you up. This stops drivers from refusing rides going places they don’t want to go, which has its merits. It also has serious downsides for drivers, who sometimes at the end of their shift pick up a rider who wants to go 40 miles in the opposite direction of their home.

Even more frightening is what Sidecar’s death says about how much room there is for competitors in the robotaxi space. There are dozens of car makers competing for a new car customer, but San Francisco, the birthplace of Uber, Lyft and Sidecar, could not support 3 players in one of the world’s hottest investment spaces. Two unicorns, but nobody else.

When it comes to competition, the ride business is a strange one. For scheduled rides (which was most of the black car business before Uber) there are minimal economies of scale. A one-car limo “fleet” is still a viable business today, picking up customers for scheduled rides. They provide the same service as a 100 car limo-fleet, though they sometimes have to turn you down or redirect you to a partner.

For on-demand rides, there is a big economy of scale. I want a car now, so you have to have a lot of cars to be sure to have one near me. I will go with the service that can get to me soonest. While price and vehicle quality matter, they can be trumped by pickup time, within reason. Sidecar, being small, often failed in this area, including my attempt to use it on its last day on my way home from the airport.

Robocars offer up a middle ground. Because there is no driver who minds waiting, it will be common to summon a robocar longer in advance of when you want it. Once you know that “I’m leaving in around 20 minutes” you can summon, and the car can find somewhere to wait except in the most congested zones. Waiting time for a robotaxi can be very cheap, well under a dollar/hour, though during peak times, robotaxi owners will raise the price a little to avoid lost opportunity costs. (Finance costs will be under 20 cents/hour at 5% interest, and waiting space will range from free to probably 30 cents/hour in a competitive parking “spot market.”)

The more willing customers are to summon in advance, the more competitive a small player can be. They can offer you instant service when you actually are ready to leave, and that way they can compete on factors other than wait time. Small players can be your first choice, and they can subcontract your business to another company who has a car close by when you forget to summon in advance.)

CES in Las Vegas

I’m off to CES Wednesday. This show, as before promises to have quite a lot of car announcements. Rumours suggest the potential Ford/Google announcement could happen there, along with updates from most major companies. There will also be too many “connected” car announcements because companies need to announce something, and it’s easy to come up with something in that space that sounds cool without the actual need that it be useful.

This morning already sees an announcement from Volvo and Ericsson about streaming video in cars. This is a strange one, a mix of something real — as cars become more like living rooms and offices they are going to want more and better bandwidth, including bandwidth reliable enough for video conferencing — but also something silly, in that watching movies and TV shows is, with a bit of buffering, a high-bandwidth application that’s easy to get right on an unreliable network. Though in truth, because wireless bandwidth on the highway is always going to be more expensive than wifi in the parking space, it really makes more sense to pre-load your likely video choices to win both ways on cost and quality. I have been fascinated watching the shift between semi-planned watching (DVD rental, Netflix DVD queue, DVR, prepaid series subscriptions, watchlists and old-school live TV) and totally ad-hoc streaming on demand. While I understand the attraction of ad-hoc streaming (even for what you planned far ahead to watch) it surprises me that people do it even at the expense of cost and quality. Of course, there are parallels to how we might summon cars!

Rumoured Google-Ford deal, low-end robocars, Tesla backslide and other news

Yahoo Autos is reporting rumours that Google and Ford will announce a partnership at CES. Google has always said it doesn’t want to build the cars, and Ford makes sense as a partner — big, but with only modest R&D efforts of its own, and frankly a brand that needs a jolt of excitement. That means it will be willing to work with Google as a partner which calls many of the shots, rather than just viewing them as a supplier, which gets to call few of them. Ford has the car-making skills, global presence and scale to take this to any level desired. Besides, if Google really wanted, it could buy Ford with cash it has on hand. :-)

This is combined with the announcement of what I predicted earlier in the year — that Alphabet will spin out the self-driving car project (known internally as “Chauffeur”) into its own corporate subsidiary.

While the big story of the week was the California regulations here are some other items worth of note, and non-note.

No, a whiz-kid hasn’t duplicated what the big labs did

There was a fair bit of press about the self-driving car efforts of George Hotz. Hotz modified an Acura ILX to do some basic self-driving. It’s a worthwhile project, and impressive for a solo operator, but because of the amount of press hype was so large, Tesla even issued a “correction” which is pretty close to spot-on.

I don’t know Hotz or anything about his effort not in the story, but what is described is what were viewed as “solved problems” years ago by the major teams. What’s interesting about his effort is how much less work is required to do it today. The sensors are much cheaper, the computing is cheaper and smaller, the AI tools and other software tools are much better and more readily available, and the cars are easier to interface to.

In particular, Hotz gets to take advantage of two things not easy for early teams. Today’s cars are all controlled by digital signals on internal controller area network buses. Many cars are very close to “drive by wire” if you can use that bus. The problem is, most car vendors are very protective about their bus protocols, and also want to change them, so it’s hard to make a production system based on unsupported protocols learned via reverse engineering. Better to take the hard but certain route of pretending to be the sensors in the brake pedal and gas pedal, and wire on to the steering motor.

The other rising trend of interest is the surge of capability in convolutional neural networks and the “deep learning” algorithm. Google loves these tools and just open sourced the TensorFlow package to spread it out into the world. This is starting to affect the conclusions I wrote in my article several years ago on the question of whether cameras or lidar will be the primary sensor in a robocar. In that essay, I conclude that computer vision is still too uncertain a quantity to predict, while cheap lidar is a safe and easy prediction. Computer vision is improving faster than expected, though it’s still not there yet. It is this, I think, that gives Elon Musk the (still probably false) confidence to declare lidar as the wrong direction.

Tesla steps back

Rumours also say that Tesla’s latest update scales back the autopilot capabilities including limiting the autopilot to the speed limit +5 on smaller roads, something that will upset customers for sure.

Many people with whom I have had conversations have felt that Tesla’s early autopilot release was reckless. And Elon Musk perhaps agrees, because he has noted that videos show customers clearly doing unsafe things with the autopilot. The Tesla autopilot handles most highway conditions, and in fact lulls people into thinking it handles them all. In reality it is a system that needs constant monitoring, like a good cruise control. Some of us have feared it’s a matter if when, not if, a Tesla on autopilot will have an incident.

One comment from Tesla has particularly concerned me. It is said the Teslas are improving every week based on learning from data gathered from all the Teslas out running in autopilot, perhaps a million miles a day. That is an impressive and useful resource, and Tesla has even said they would love for them to learn every day. Learning is good, but that rate of learning strongly suggests that no human quality assurance is being done on the results of the learning — the QA is being done by the customers. I fear that is not a safe approach at this stage of the technology.

Many more teams and entrants

Baidu has stepped up their efforts and now also will work on buses. They have also stepped up their partnership with BMW. Samsung has entered the fray as well as Kia (Hyundai announced big plans earlier this year.) Tata group has also announced plans but through the Tata Elxsi design division, not Tata Motors. (Mahindra earlier offered a prize for robocar development in India.)

California DMV regulations may kill the state's robocar lead

Be careful what you wish for — yesterday the California DMV released its proposed regulations for the operation of robocars in California. All of this sprang from Google’s request to states that they start writing such regulations to ensure that their cars were legal, and California’s DMV took much longer than expected to release these regulations, which Google found quite upsetting.

The testing regulations did not bother too many, though I am upset that they effectively forbid the testing of delivery robots like the ones we are making at Starship because the test vehicles must have a human safety driver with a physical steering system. Requiring that driver makes sense for passenger cars but is impossible for a robot the size of breadbox.

Needing a driver

The draft operating rules effectively forbid Google’s current plan, making it illegal to operate a vehicle without a licenced and specially certified driver on board and ready to take control. Google’s research led them to feel that having a transition between human driver and software is dangerous, and that the right choice is a vehicle with no controls for humans. Most car companies, on the other hand, are attempting to build “co-pilot” or “autopilot” systems in which the human still plays a fundamental role.

The state proposes banning Google style vehicles for now, and drafting regulations on them in the future. Unfortunately, once something is banned, it is remarkably difficult to un-ban it. That’s because nobody wants to be the regulator or politician who un-bans something that later causes harm that can be blamed on them. And these vehicles will cause harm, just less harm than the people currently driving are doing.

The law forbids unmanned operation, and requires the driver/operator to be “monitoring the safe operation of the vehicle at all times and be capable of taking over immediate control.” This sounds like it certainly forbids sleeping, and might even forbid engrossing activities like reading, working or watching movies.

Special certificate

Drivers must not just have a licence, they must have a certificate showing they are trained in operation of a robocar. On the surface, that sounds reasonable, especially since the hand-off has dangers which training could reduce. But in practice, it could mean a number of unintended things:

  • Rental or even borrowing of such vehicles becomes impossible without a lot of preparation and some paperwork by the person trying it out.
  • Out of state renters may face a particular problem as they can’t have California licences. (Interstate law may, bizarrely, let them get by without the certificate while Californians would be subject to this rule.)
  • Car sharing or delivered car services (like my “whistlecar” concept or Mercedes Car2Come) become difficult unless sharers get the certificate.
  • The operator is responsible for all traffic violations, even though several companies have said they will take responsibility. They can take financial responsibility, but can’t help you with points on your licence or criminal liability, rare as that is. People will be reluctant to assume that responsibility for things that are the fault of the software in the car they use, as they have little ability to judge that software.

No robotaxis

With no robotaxis or unmanned operation, a large fraction of the public benefits of robocars are blocked. All that’s left is the safety benefit for car owners. This is not a minor thing, but it’s a small a part of the whole game (and active safety systems can attain a fair chunk of it in non-robocars.)

The state says it will write regulations for proper robocars, able to run unmanned. But it doesn’t say when those will arrive, and unfortunately, any promises about that will be dubious and non-binding. The state was very late with these regulations — which is actually perfectly understandable, since not even vendors know the final form of the technology, and it may well be late again. Unfortunately, there are political incentives for delay, perhaps indeterminate delay.

This means vendors will be uncertain. They may know that someday they can operate in California, but they can’t plan for it. With other states and countries around the world chomping at the bit to get vendors to move their operations, it will be difficult for companies to choose California, even though today most of them have.

People already in California will continue their R&D in California, because it’s expensive to move such things, and Silicon Valley retains its attractions as the high-tech capital of the world. But they will start making plans for first operation outside California, in places that have an assured timetable.

It will be less likely that somebody would move operations to California because of the uncertainty. Why start a project here — which in spite of its advantages is also the most expensive place to operate — without knowing when you can deploy here. And people want to deploy close to home if they have the option.

It might be that the car companies, whose prime focus is on co-pilot or autopilot systems today, may not be bothered by this uncertainty. In fact, it’s good for their simpler early goals because it slows the competition down. But most of them have also announced plans for real self-driving robocars where you can act just like a passenger. Their teams all want to build them. They might enjoy a breather, but in the end, they don’t want these regulations either.

And yes, it means that delivery robots won’t be able to go on the roads, and must stick to the sidewalks. That’s the primary plan at Starship today, but not the forever plan.

California should, after receiving comment, alter these regulations. They should allow unmanned vehicles which meet appropriate functional safety goals to operate, and they should have a real calendar date when this is going to happen. If they don’t, they won’t be helping to protect Californians. They will take California from being the envy of the world as the place that has attracted robocar development from all around the planet to just another contender. And that won’t just cost jobs, it will delay the deployment in California of a technology that will save the lives of Californians.

I don’t want to pretend that deploying full robocars is without risk. Quite the reverse, people will be hurt. But people are already being hurt, and the strategy of taking no risk is the wrong one.

No, a Google car was not ticketed for going too slow, and other stories

Another road trip has meant fewer posts — this trip included being in Paris on the night of Nov 13 but fortunately taking a train out a couple of hours before the shooting began, and I am now in South Africa on the way to Budapest — but a few recent items merit some comment.

Almost every newspaper in the world reported the story of how a motorcycle cop pulled over one of Google’s 3rd generation test cars, the 2 seaters, and a lot of incorrect reports that the car was given a ticket for going too slow. Or that there was “no driver to ticket.” Today, Google’s cars always have a safety driver (who has a steering wheel) and who is responsible for the car in case it does something unexpected or enters an especially risky situation. So had there been a ticket to write, there would have been a driver in the car, just as there is if you get a ticket for speeding while using your cruise control.

Google’s prototype is what is known as a “Neighbourhood Electric Vehicle” or NEV. There are special NEV rules in place that make such vehicles much less subject to the complex web of regulations required for a general purpose vehicle. They need to be electric, must not travel on roads with a speed limit over 35mph and they must themselves not be capable of going more than 25mph. The Google car was doing 24mph when the officer asked the safety driver to pull over, so there was nothing to ticket. Of course, that does not mean an officer can’t get confused and need an explanation of the law — even they don’t know all of them.

The NEV regulations are great for testing, though there is indeed an issue around how the earliest robocars will probably want to go a little slow, because safety really is the top priority on all teams I know. As such, they may go as slowly as the law allows, and they may indeed annoy other drivers when doing that. This should be a temporary phase but could create problems while cars learn to go faster. I have suggested in the past that cars wanting to go slow might actually notice anybody coming up behind them and pull off the road, pausing briefly in driveways or other open spots, so that the drivers coming up behind never have to even brake. A well behaved unmanned vehicle might go slowly but not present a burden to hurried humans.

Ford may also avoid standby supervision

Recent reports suggest that Ford, like Google, may have concluded that there is not an evolutionary path from ADAS to full self driving, in particular, the so-called “level 3” which I call standby supervision, where a human driver can be called on with about 10 seconds notice (but not anything shorter) to resolve live driving problems or to take the wheel when the car enters a zone it can’t drive. This transition may just be too dangerous, Google has said, along with many others.

Cheaper LIDAR etc.

Noted without much comment — Quanergy, on whose advisory board I sit, as announced progress on the plans for an inexpensive solid state LIDAR, and plans to ship the first on schedule, in 2016. This sub-$1000 LIDAR keeps us on a path to even cheaper LIDAR, which should eliminate all the people who keep saying they want to build robocars without LIDAR — I am looking at you, Elon Musk. Nobody will make their first full robocar less safe just to save a few hundred dollars.

Also related to Starship, another company I advise, is the arrival of not one but two somewhat similar startups to build small delivery robots. “Dispatch Network” involves U.S. roboticists who participated in a Chinese based hardware accelerator and have a basic prototype, larger than the Starship robot. “Sidewalk” — a Lithuanian company, also has a prototype model and a deal with DHL to do research together with them on last mile robots.

My flight is boarding — more to come.

Announcing delivery robots from Starship Technologies (with yours truly)

I’m pleased to announce today the unveiling of a new self-driving vehicle company with which I am involved, not building self-driving cars, but instead small delivery robots which are going to change the face of retailing and last-mile delivery and logistics.

Starship Technologies comes out of Europe, created by two of the founders of Skype, Janus Friis and Ahti Heinla who is CEO. The mission is similar to the vision I laid out in 2007 for the Deliverbot — the self-driving box that can get you anything in 30 minutes for under a dollar.

Here is the press release and a simple video and a collection of press and other videos.

Starship is still in early stages, but will be conducting a pilot project next year in the UK, and another in the USA shortly thereafter. Customers will be able to place online orders and have a robot come to their home immediately or on their schedule.

Why is this possible well before full unmanned self-driving cars can go into public use? There are all sorts of reasons.

  • The boxes are not in a super hurry:
    • They will go slowly and cautiously
    • They don’t mind detours, and can take the safest rather than shortest route to you
    • It’s not a big deal if they have to pause if they encounter children or anything confusing or risky, or need to wait for a remote operator to solve a problem
  • They will travel on the sidewalks, rather than the roads (already legal in many places but work is needed in others)
  • They will be slow and light, so that if something goes seriously wrong and they hit you, they won’t injure you
  • They won’t hit you though, because they can come to a full stop in under a foot
  • You don’t need crumple zones, airbags or other passenger safety features for cargo, making them simple and inexpensive

How big is the last mile? It’s huge. It’s not just what today’s delivery companies do. Most deliveries are actually made by customers who run out to stores to get stuff. The Starship robot will bring you things in less time than a round-trip shopping trip would take, for less money, and with vastly less energy, pollution, traffic congestion and parking. It’s a win for the store, the customer and for society.

It’s a really big win for those with disabilities or difficulty moving. The elderly are going to be able to live in their own homes with greater independence even if shopping has become such a chore they were contemplating a senior home.

The robots will eventually create an “internet of parcels” (I guess the term “internet of things” is already in use) where physical goods can move around cities with an ease surpassed only by data. Not only will you be able to buy anything, you’ll be able to rent things on short notice too, or borrow them from your neighbours. The sharing economy can be enabled and the meaning of ownership may change.

The convenience of robot delivery will surprise people. A common question I get asked is “What does the robot do if you’re not home when it delivers?” and my answer is, “why would you want the robot to deliver when you’re not home?” Regular delivery run’s on a driver’s schedule, robotic delivery will run on yours. Robots don’t mind waiting either, so you could ask a shop to put 5 pairs of shoes into a robot, and at home you could try them on and put 4 pairs back in the robot and keep the ones you like.

I also expect interesting changes in prepared food. It will be possible to run a “restaurant” inexpensively in a private kitchen and get ingredients and deliver dishes quickly and cheaply with no wastage. A family might even order different dishes from different locations to create a meal.

Nothing is 100% good for everybody — there will be disruption in the retail industry, and retailers who exist primarily so you can go get things will have trouble competing if they don’t embrace this model, but other retailers who are suffering from competition from the online stores may find they can now dominate with fast service.

Of course, there might be competition in the air. Our students at Singularity University were among the first to work on drone delivery with the Matternet project which is beginning a trial delivering for the post office on the steep slopes of Switzerland. Both methods face legal challenges, and both have their advantages. Drones will be faster and can cover unusual terrain, while ground robots can carry more with less energy and have an easier time landing. :-) I suspect people will tolerate small robots on their sidewalks more than drones with heavy packages over their heads, but we’ll see.

Note that I’m a special advisor to Starship on both technology and business, but this post is written with my own voice, and doesn’t speak on behalf of the company.

Syndicate content