Robocars

French Robocar Effort, and CES news

A new robocar project named “Quasper” has emergence in France from the IRSEEM Esigelec lab and IFSTTAR. This vehicle uses a commercial actuator robot to control the wheel and pedals for drive-by-wire, and features a variety of typical sensors, though it only has a couple of smaller SICK LIDARSs rather than a high resolution LIDAR like the Velodyne used by many other projects. Their work is fairly basic for now. Because the DBW system occupies the driver’s seat, manual control is done through a joystick which controls the drive-by-wire robot. As a nice aesthetic touch, they have put much of the electronics in a standard roof box on top of their minivan. (Some of the early robocars did have a certain mad-science look with all their gear covering the roof.)

Here is a video of their vehicle in operation

At the Consumer Electronics Show in Las Vegas this week, which I attended, most of the car announcements were for information and entertainment systems in cars. The one positive light is that many car vendors now realize they no longer can own and control all the digital systems in a car, and are making tools to connect with the driver’s phone and tablet for various purposes. They are not quite ready to use the phone as their data connection, though so most mean you will be paying for 2 data connections.

Mercedes and Audi had displays relating to ADAS and autonomous driving. While there was no sign of the Mercedes 2013 S class that will feature an autopilot, they did show a rather strange demo of a future self-driving car where the windshield was now a giant augmented reality screen. There, using hand gestures, you could point and objects in the real world and learn more about them. Of course, if your car is self-driving, you could use any interface, not just a gestural one. Today, gestural interfaces are not very well developed and most people prefer touchscreens and keyboards.

Audi showed their lane-keeping system and crash avoidance tools. While they didn’t make a deal about it, reports say they are planning to have a traffic-jam autopilot like the Mercedes one, but up to 60kph instead of just 40kph. This means combining their lane-departure-correction system, which steers you back into the lane using the steering motor, and their automatic cruise control which follows the car in front. It’s now up to Audio and Mercedes to see who comes out first. It will be very interesting, as well, to see how the public responds to it.

Mercedes is downplaying the value of a self-driving car. In a keynote by M-B boss Dr. Dieter Zetsche, he said the following (as reported by Motor Trend):

“We don’t believe that autonomous driving is the ultimate goal. We still want the driver to be in charge, in control, be the pilot. But when you are stuck in a traffic jam, when you are driving five hours straight through Nebraska, it might not be the most fun (to drive). And at that time you can switch and say, ‘Take over, I’ll read a nice book, look at movies, or listen to music.’ So it’s your choice, you’ll always be in control, but you have the choice to hand (the controls) over to an autonomous car.”

High end brands like Mercedes are in an uncomfortable situation. For a long time, they have sold their product based on the excitement of driving. They are torn between that message and the value of the robocar. My own prediction is that initially, people will indeed be keen on cars which do the boring driving, but take them to places where the driving is more fun. While fun driving will not go away, I predict people will start feeling that more and more driving is a chore to leave to the robot, and less and less is a thrill that demands taking the wheel. Look at how readily people who move to New York or other non-driving cities adapt to not driving. But that’s not a message sporty car brands will want to say. At the same time, self-driving will be a desired luxury feature and so luxury cars will have to offer it. The problem is that high end brands tend to offer both sport and luxury, often in the same vehicles.

Concept robocars at Tokyo Auto Show and more

As expected, there’s more news from the Tokyo auto show, which is well known for strange concept cars.

First there is the Toyota Fun Vii

The video is very science-fictional, though they have built a concept to look at without the auto-driving. Amusingly, they do show something I have always thought would be a nice ironic demo — playing a car racing game while in a self-driving car. While we are some distance away form a car where the entire surface, inside and out, is a display, I do think we’ll see display panels on robocars to help them act as taxis. Those display panels will say who the taxi is for, and might even have your favourite bumper sticker slogan while you move inside. Inside displays will be useful for all the things you would expect — dashboard, work and entertainment.

Toyota is also showing a Prius with a system them call AVOS (Automatic Vehicle Operation System.) While this is said to be a longer-term self-driving systems, report suggest that what will be done at the motor show is back-seat rides demonstrating parking ability and pickup at the door, similar to Nissan’s Pivo and Stanford’s Junior 3, but with some added obstacle avoidance. I have not seen reports of rides as yet. The Prius itself is use more basic sensors than the Google car and other major robocars.

Speaking of Nissan, this brief interview with Mitsuhiko Yamashita, head of R&D, still promotes the idea of dedicated lanes, which I believe would vastly slow the deployment of self-driving vehicles.

On the other hand, speaking of Google, here’s a New York Times op-ed by Sebastian Thrun with his picture of the future.

Nissan Pivo 3 concept has valet park, come-get-me features

Nissan has announced a new version of their Pivo concept car. The Pivo 3 here’s a story with a video offers 4 wheel steering and automatic parking, including a claimed functionality for automated valet parking. In the AVP case, the car requires a special parking lot, though it is not said what changes are needed. A few years ago the Stanford team demonstrated Junior 3 which could valet park in a lot to which it had a map, and which had no civilian pedestrians.

The Pivo 3, it is reported, “will come and pick you up when you summon it.” Presumably this involves both the parking lot and the path to the door where you summon it containing the special infrastructure it needs, but this is not described. What’s also described is something fairly important — automatic charging, where the car takes itself to a charging station and hooks up.

They say they have no commercial plans for the car, but that they do expect to put such functionality into other cars around “2016 to 2017.”

With the Tokyo motor show about to start, expect new announcements from Japan in the days to come — for example Toyota has promised a self-driving Prius at the show, in a similar parking lot mode to the Pivo.

BMW designer feels robocars over a decade away and the never-driving baby

In contrast to the optimism I usually present here, and last week’s article about a self-driving Mercedes just a year away it’s worth noting this interview with various BMW folks where they provide a much more cautious timeline of at least a decade. Part of their concern comes from the use of computer vision systems. These are much cheaper than laser scanners but do not provide the reliability needed; it’s no accident that all the successful teams in the Darpa urban challenge relied very heavily on laser scanning.

I’m enough of an optimist that I am ready to bring forward the question “When will a child be born that never drives because of robocars?” Of course there are many people in the developed world who never get a licence for a variety of reasons, particularly people who live their lives in Manhattan and other transit-heavy cities. But for most of us, getting a licence and getting on the road is a rite of passage. Yet studies are showing that teens are now waiting longer to get a licence with various reasons speculated.

Nonetheless eventually we will see somebody who would normally have been jumping at the chance to get a licence and get out on the road who never gets one because they have a robocar. It won’t be easy of course, since even those who have robocars will still need to travel to places that don’t have them and rent cars, but many people who don’t have licences today just make use of taxis and transit in those situations.

I will put forward the proposal that this child may already have been born. When I see a baby today, I wonder, “will this child ever learn to drive?” While 16 years is aggressive for the ubiquitous fully autonomous operation needed for this, I do think we’re on the cusp, and if that child has not yet been born, it’s not too far away.

One reason for this is all the forces that are already reducing teen driving. A teen debating whether to take the effort to learn to drive might easily be swayed not to because mom has bought him a robocar. Once a successful safety record for robocars is demonstrated, parents will buy them for teens — instead of buying them driving lessons — and pressure the teens to not take the risk of driving themselves.

In other news, here’s a pointer to work by designer Charles Rattray on the look of future robocars. His designs match with my position that many robocars should be half the width of today’s cars, carrying only 1-2 people, since the vast majority of cars today only carry 1-2 people. Today’s car buyers insist on 5 passenger sedans (or larger) but when you have mobility-on-demand you can use the right vehicle for the trip on every trip, and that’s going to mostly be one person vehicles. This in turn, is the real key to efficient transportation, because while you can do great things with more efficient or electric power trains and more aerodynamic cars, nothing compares to making the car smaller, lighter and narrower in a major way. He has many design sketches and a video of how he sees the cars in action.

2013 Mercedes S class to feature autopilot for stop-and-go

For the first time, a car company has put a date on shipment of a car with self-driving ability.

According to British site Auto Express, Mercedes has revealed that their 2013 S-class will feature self-driving. Not clear if there is an official company press release, though the company has been talking about such features, as have many other companies. Realize that the 2013 model year is just a year away.

The car will feature radar based automatic cruise control, combined with lane-marker following, and the automatic driving will only operate below 40kph. In other words, this is designed to let you take your hands off the wheel in stop-and-go traffic jams, not to drive you at actual open driving speeds. You’ll need to pay attention to the road, not read a book, but at that low speed you’ll have decent warning if something goes wrong and the car starts drifting, so I suspect that in spite of warnings not to do so, people will get away with minor tasks like reading a few e-mails or even sending some.

While a very basic level introduction, this is still a milestone and will pave the way (love those road metaphors) for other companies. While the focus of the DARPA grand challenges and most visions of the robocar future has been on cars that can drive completely on their own, there are now strong signals that the technology will arrive in the form of driving assist, and human drivers will be called upon to still do much of the driving, in particular the tricky bits the systems aren’t safe to handle. In my article a few years ago the roadmap to robocars I suspected we might see a few specialized applications first, such as robot valet parking and even autonomous vehicles for military delivery applications, but now the autopilot is on track for showing up commercially first.

ITS vehicle to vehicle demo at ITS World Congress

I’m just back from the “ITS World Congress” an annual meeting of people working on “Intelligent Transportation Systems” which means all sorts of applications of computers and networking to transportation, particularly cars. A whole bunch of stuff gets covered there, including traffic monitoring and management, toll collection, transit operations etc. but what’s of interest to robocar enthusiasts is what goes into cars and streets. People started networking cars with systems like OnStar, now known in the generic sense as “telematics” but things have grown since then.

The big effort involves putting digital radios into cars. The radio system, known by names like 802.11p, WAVE and DSRC involves an 802.11 derived protocol in a new dedicated band at 5.9ghz. The goal is a protocol suitable for safety applications, with super-fast connections and reliable data. Once the radios in the car, the car will be able to use it to talk to other cars (known as V2V) or to infrastructure facilities such as traffic lights (known as V2I.) The initial planned figured that the V2I services would give you internet in your car, but the reality is that 4G cellular networks have taken over that part of the value chain.

Coming up with value for V2V is a tricky proposition. Since you can only talk to cars very close to you, it’s not a reliable way to talk with any particular car. Relaying through the wide area network is best for that unless you need lots of bandwidth or really low latency. There’s not much that needs lots of bandwidth, but safety applications do demand both low latency and a robust system that doesn’t depend on infrastructure.

The current approach to safety applications is to have equipped cars transmit status information. Formerly called a “here I am” this is a broadcast of location, direction, speed and signals like brake lights, turn signals etc. If somebody else’s car is transmitting that, your car can detect their presence, even if you can’t see them. This lets your car detect and warn about things like:

  • The car 2 or 3 in front of you, hidden by the truck in front of you, that has hit the brakes or stalled
  • People in your blind spot, or who are coming up on you really fast when your’re about to change lanes
  • Hidden cars coming up when you want to turn left, or want to pass on a rural highway
  • Cars about to run red lights or blow stop signs at an intersection you’re about to go through
  • Privacy is a big issue. The boxes change their ID every minute so you can’t track a car over a long distance unless you can follow it over every segment, but is that enough? They say a law is needed so the police don’t use the speed broadcast to ticket you, but will it stay that way?

It turns out that intersection collisions are a large fraction of crashes, so there’s a big win there, if you can do it. The problem is one of critical mass. Installed in just a few cars, such a system is extremely unlikely to provide aid. For things like blindspot detection, existing systems that use cameras or radars are far better because they see all cars, not just those with radios. Even with 10% penetration, there’s only a 1% chance any given collision could be prevented with the system, though it’s a 10% chance for the people who seek out the system. (Sadly, those who seek out fancy safety systems are probably less likely to be the ones blowing through red lights, and indeed another feature of the system — getting data from traffic lights — already can do a lot to stop an equipped car from going through a red light by mistake.)  read more »

Google's robocar explained in video

Since getting involved with Google’s self-driving-car team, I’ve had to keep silent about its internals, but for those who are interested in the project, a recent presentation at the intelligent robotics conference in San Francisco is now up on youtube. The talk is by Sebastian Thrun (overall project leader) and Chris Urmson, lead developer. Sebastian led the Stanley and Junior teams in the Darpa Grand Challenge and Chris led CMU teams, including BOSS which won the urban challenge.

The talk begins in part one with the story of the grand challenges. If you read this blog you probably know most of that story.

Part two (above) shows video that’s been seen before in Sebastian’s TED talk and my own talks, and maps of some of the routes the car has driven. Then you get Chris showing some hard technical details about mapping and sensors.

Part three shows the never before revealed story of a different project called “Caddy”: self-driving, self-delivering golf carts for use in campus transportation. The golf carts are an example of what I’ve dubbed a WhistleCar — a car that delivers itself and then you drive it in any complex situations.

If you want to see what’s inside the project, these videos are a must-watch, particularly part 2 (embedded above) and the start of part 3.

There’s lots of other robocar news after the Intelligent Transportation Systems conference, which I attended this week in Orlando FL. The ITS community is paying only minimal attention to robocars, which is an error on their part, but a lot of the technology there will eventually affect how robocars develop — though a surprising amount of it will become obsolete because it focuses on the problems caused by lots of human driving.

Oxford and BAE make "Wildcat" robocar

The list of robocar teams grows again with a new project from Oxford university, led by Paul Newman. Nissan is also involved, though the base vehicle is a Bowler Wildcat off-road vehicle.

The project sports a LIDAR design I have not yet seen, with 4 laser units on a mount spinning at what looks like 1-2hz, but they claim a 40hz sampling rate and do have very nice mapping results. They claim their localizer is very good, and demos show it working on rough off-road terrain. Some videos also see it doing waypoint driving without the LIDAR but they talk about why GPS is not adequate.

The Daily Mail story has the best pictures and details. You can also visit the MRG youtube channel.

The vehicle reportedly uses stereo vision as well as the LIDAR, and has left and right bumper mounted lasers as well as the roof unit.

There are additional videos, made by reporters in this BBC news story and a good interview in this Telegraph story.

The claims about the vehicle have a British understatement. They say it will be 10-15 years before it’s ready for the roads, and talk mostly about simple problems like handling traffic jams — something Audi, BWM and VW have all claimed they will release in the middle of this decade, using simpler sensor systems. He also envisions a future arms-race where a car that can do 10 minutes/day of self-driving competes with one that can do 15.

Congestion is their main message it seems, citing the Dept. for Transport’s figures of a 25 billion pound cost for congestion in 2025 in the UK.

Bigdog becomes Alphadog -- walking robots step closer to the real world

Earlier I wrote about the transportation potential of walking robots-of-burden like BigDog. While these robots are not for the long haul, a whole range of options are opened up by a wheeled vehicle that can get to where the road ends, and then lower legs to walk along rough terrain, up stairs and up hills.

Boston Dynamics has gone even further with their latest model, AlphaDog

The AlphaDog’s legs are hydraulic, and so adding legs like this to a car which has a motor and compressor is not so far fetched. In this design they could easily fold up into the sides of a single person wheeled vehicle. In the video, the robot is shown carrying 400lbs of weights, and a range of 20km is claimed. You might not quite want to ride it yet, but that’s coming.

Let’s look at some of the consequences for transportation and cities:

  • Houses need not be on streets to have full access by small vehicles and cargo delivery robots. They can be on the side of hills and up stairs. Neighbourhoods can be built with just small lightly paved or graded paths so that the robot’s legs don’t disturb the terrain.
  • The robots may well, in a controlled environment, be able to place their feet with good precision. As such the path for a walking robot might look like just a series of stone pads dotting the grass — the way some paths for people look. In reality they would be more sturdy, but that’s what they could look like.
  • In developing countries which do not have infrastructure, they may never have to put in that much infrastructure. Combined with flying robots, delivery of goods can become possible to any location, and at high speed.
  • The world’s tourist destinations may become swamped with people who can ride a walking robot to remote locations where before the daunting hike kept the crowds down. There will be efforts to ban walking chairs, but the elderly and disabled will be able to fight such bans as discriminatory.
  • Indeed, for the disabled and aged, the walking chair robot might well open up lots of the world that is now closed. The main issue would be power and noise. The motors that power BigDog are very noisy. AlphaDog in the video is using external power.
  • Robotic cargo delivery (deliverbots) need no longer be limited to places you can roll up to. That can include places inside buildings, even up stairs.

BMW Robocar, Audi and more

Some Robocar updates, since with Burning Man and Singularity U my posting volume has been down:

BMW Highly Automated Driving

BMW has announced a prototype car with a “Highly Automated Driving” feature on the 5 series. The vehicle, which has logged 3,000 miles of minimal driver involvement, uses a vision system from the lane departure camera, maps, the ACC radar and high-accuracy GPS. It is claimed to handle allowing and doing highway merges. The system is not meant to allow the driver to take their eyes off the road, though, and his highway-only. The system was also called “ConnectedDrive Connect (CDC)” which strikes me as a somewhat awkward name.

BMW also recently demonstrated some other self-driving technology on test tracks and has a very active lab. With Volkswagen’s Temporary Auto Pilot, Mercedes and Audi all promoting concept cars with autonomous modes, German companies seem to be the most engaged in the field. BMW has also shown a “traffic jam assistant” similar to the Audi system below.

Audi EV A2 has traffic jam autopilot

Another concept car (An earlier Audi was used in the Pikes Peak challenge) from Audi will feature an autopilot for stop and go traffic. Here they combine lane-keeping and automatic cruise control, except at lower speeds where the risk is low. The driver still has to pay some attention, and when traffic gets moving again they must take full control. Still, it’s aimed at one of the greatest annoyances of commuting.

Made in Germany continues on the roads

The AutoNOMOS team reports success with their vehicle on the streets of Berlin, though so far only 80km of operation. They have 6 laser sensors, and claim that they believe the vehicles will soon be ready to deploy on private roads, but will need a decade of legal work to be used on the public streets.

Autonomous tractor out working the fields

For some time the concept of “precision agriculture” has been the high-tech hotspot in farming. Here, tractors equipped with GPS and other location technologies take detailed maps of the fields and the crops and custom control spray of fertilizers, pesticides and other substances according to data about what’s right for each small square. However, farmers are still at the controls. Some day, tractors may drive themselves and engage in many farm activities. In the fields, there is not usually much to run into and you don’t go very fast. On the other hand, most family farmers today farm as a lifestyle and aren’t looking to automate it, but agribusiness operators are.

Here’s a report on an autonomous tractor project, guided for now just by GPS.

Interesting robocar test in China

A report from China Daily details a successful 286km trip by a vehicle from the National University of Defense Technology.

According to the report the vehicle did fully autonomous highway driving, and did not use GPS, just LIDAR, radar and vision systems. Modern robocars do not rely exclusively on GPS, as it is both inaccurate and goes out in certain regions, but they do like to use it to help them localize, so not using it at all suggests a good localizer. They also report handling fog, thunderstorms and poor lane markers, all good acheivements.

There is what appears to be a machine translated article with some photos. The external photo seems to show an unmodified car, the internal one shows what appear to be two stereo cameras left and right, though the article talks mostly about LIDAR and radar, not vision systems. Dai Bin, spokesman for the team has published papers on both LIDAR based obstacle avoidance and vision systems similar to the one used by Stanley in the Darpa desert challenge for off-road use.

It will be interesting to hear more about the work of this team.

In other news, BMW has announced that its 2014 i3 battery-electric car will also offer a combination of lane-keeping and adaptive cruise control](http://www.greencarreports.com/news/1064191_2014-bmw-i3-moves-us-closer-to-autonomous-driving-in-cities) while under 25mph, effectively being a “stop and go traffic autopilot.” This is an interesting early offering, since it’s easier to put this together at low speeds in the controlled highway environment.

Also included will be a detection system for impeding collisions which can apply the brakes, and a fully automatic parallel parking system (most earlier systems still needed human control of the brake, causing amusing-if-it’s-not-you accidents for people who didn’t think they had to do anything.)

Robocar legality in Nevada, Germany and more news

A wrapup of robocar news from the past couple of weeks:

Nevada governor Brian Sandoval rides in Google Car

After Nevada’s recent legislation directing their DOT to explore legal operations for robocars in the state, the governor “took the wheel” of a Google car. Very positive impressions from the governor and DMV head.

Video of Virginia Tech “car for the blind”

Here’s a video interview with Dennis Hong of Virginia Tech on his effort to make a car for use by the blind.

Autonomous car team in India

A new student robocar team has sprung up in India. They’re still early but their goal of driving in the crazy Indian traffic is a daunting one. Robocars have many advantages at low speed, where the 360 degree vision of LIDARS makes them see more than a human will. Harder is modeling the behaviour of other vehicles and playing games of chicken.

More mainstream press articles

Mainstream press articles of the robocar future and the intermediate technologies are growing in number. Here’s Smartmoney on near-term technologies and a Slate piece that, like almost all mainstream press pieces, asks whether people are really willing to give up the freedom of driving. Perhaps I’m too immersed, but in my immersed perspective I have simply stopped wondering about this. There will be a few who think like the dodge ad but huge numbers of people keep asking me when they can get one.

IEEE conference at Stanford paints alternating views with optimism vs. long roadmaps

Last Saturday a small IEEE conference at Stanford covered car automation technologies, including a morning on autonomous vehicles with mixed views. Steven Shladover, for example has a decades long history in important projects like cars guided by embedded road magnets, ITS, cooperative cruise control and platooning, but he is highly skeptical of autonomous cars which drive with regular cars, insisting instead that dedicated lanes are the answer. He believes this will start by building dedicated lanes for express buses (BRT) — which is something there is political will to do in many cities — and then automating the buses in those lanes. Once this is done, cars can enter the lanes if they communicate properly with the other vehicles in the lane and the lane itself.

This infrastructure approach is simpler from a technical standpoint, but the building of new infrastructure is such a hard problem and point of slow progress that my bet, as readers know, is on robocars on ordinary streets. Without the BRT component, I view proposals for new robot-only lanes to be dead in the water. Still, it’s worth paying attention when somebody with lots of experience disagrees so fundamentally with your views.

Volkswagen, while having recently promoted their Temporary Auto Pilot, displayed a roadmap that was much slower, suggesting that having a car that could pick you up at the airport or park itself on streets was something we might see in 2028.

Another lesson from the conference was the extreme difficulty of introducing radical innovation through big automakers. Cars are perhaps the most complex product sold, as well as the most expensive consumer product for most. As a result the industry has created huge amounts of “process” to how it plans and innovates, and that process is not ready to accept much in the way of disruptive technology. As I wrote earlier about the radio as the potential place for innovation in cars, car makers are now considering the central console where the radio and other controls are found the “golden stack” and they want to be the provider of it. Especially because the stuff they sell there sells for a huge margin; people often pay $2000 for an in-car GPS that’s worse than what they get free in their phone or for $250 in the aftermarket.

German team gets permission for their robocar tests on city streets

The AutoNOMOS team at Freie Universität Berlin reports they have been approved to test on city streets. This testing will be similar to the testing Google has reported doing in California, with a safety driver and copilot in the car to monitor and take control in any situation that presents a safety risk. According to the New York Times, Google didn’t seek a specific permission but state officials did agree, when asked by the times, with the interpretation that a vehicle with a licenced driver responsible for vehicle operations was legal.

Porsche trying to make a very smart cruise control

While not up to Volswagen’s temporary auto pilot, which combines ACC with lane-following, Porsche is developing a learning automatic cruise control that will come to understand road curves and speed and drive better as it learns.

Lots of exciting news, even in the slow summer season. Disclaimer note: The Google car project is a consulting client of mine.

A solar panel on a robocar

I often see people say they would like to see solar panels on electric cars, inspired by the solar-electric cars in the challenge races, and by the idea that the solar panel will provide some recharging for the car while it is running and without need to plug it in.

It turns out this isn’t a tremendously good idea for a variety of reasons:

  • You’re probably not going to get more than a couple hundred watts of PV peak power on a car with typical cells. Even properly mounted on a roof in a sunny place like California, each peak watt delivers an average of about 5 watt-hours in a day, so 200 watts gives you 1kw-h. That’s good for around 4 to 6 miles on today’s electric cars. Not a huge range boost.
  • While thin film panels don’t weigh a lot the power they provide during actual driving would normally be only a minor boost. My math suggests they weigh more than the battery for the power they will provide while operating.
  • Panels on a car will instead be mounted flat, cutting about 30% of their output. Normally you want to tilt to the angle of the sun.
  • Cars are often in the shade, even parked indoors. Unless you work to pick your parking to have sun all day, you’ll only get a fraction of the power.
  • If you do leave your car in the sun, in many places that means it will get quite hot, you’ll burn up some of the solar energy cooling it down. (Indeed, the solar panels sometimes found on today’s hybrids and EVs don’t charge the battery, they just run a cooling fan.)
  • The worst one: If your battery is not somewhat discharged, it doesn’t have any place to put the solar energy, and so it is just thrown away. But due to range anxiety, people prefer their electric cars be kept full. It takes careful planning to use that energy.
  • A car is a very bumpy place, so you need more rugged panels than what you might put on a roof.

It is possible to get more than 200w on a car — some of the solar challenge cars that exist to be nothing but panels have gotten around a kw by using high price, high-efficiency panels. But it’s still generally much better to just put the panels on a roof where they will realize their full potential, and feed the grid, and charge from the grid.

However, on Friday I was teaching a class on the future of Robocars to my students at Singularity University and in the exercises some students wondered if they might do something for solar powered cars. (I was impressed since the students, having had only a short time to think about the issue, have to work to bring up something new.)

Robocars might solve some of the problems above, and thus possibly make sense as a place to put panels.

  • A robocar parks itself and can move. So one with a solar panel can move around to make sure it’s always in the sun, and that the sun is striking it from the right angle. It can’t move too far or too often without wasting some of the power, but it can do something.
  • When the batteries get so full that they are not making proper use of the solar energy, a robocar can find a charging station, not to charge but rather to sell excess power back to the grid and other cars. (This presumes charging stations are set up this way.)
  • Robocars could dock with other robocars that are more discharged and offer them the extra solar power, no charging stations involved — though fancy robotics are needed on the charging interface, or human beings who can do the connections.
  • If a robocar has an actuator that can tilt the panels, it can do even better. While an ordinary car could have this, an ordinary car would not have the ability to rotate in the plane of the ground to track the sun without another actuator.

It’s still not great, but it might improve things. Generally it still may be better to have the panels on rooftops and get the most from them. However, when we start thinking about super lightweight cars, cars that travel for under 100 watt-hours/mile, as well as higher efficiency panels, we might get some value if the panels are light.

It’s also expensive to install panels on top of existing facilities. Turns out that while panels are dropping below 1$/watt next year thanks to cheap Chinese capital and manufacturing, the cost of install is still over $2/watt. Cost of install on newly manufactured buildings — or cars — can be cheaper because it’s designed in from the start. The car already has the complex electrical system, while houses need to add them if they go solar.

People really are in love with the idea of a solar powered car. It’s not really possible to go green this way right now, but the future might bring something interesting.

Car users frustrated with their tech

The latest JD Power survey on car satisfaction has a very new complaint that has now the second most annoying item to new car owners namely problems with the voice recognition system in their hands-free interface. This is not too surprising, since voice recognition, especially in cars, is often dreadful. It also reveals that most new tech has lots of UI problems — not every product is the iPod, lauded from the start for its UI.

But one interesting realization in the study is that users have become frustrated at having too many devices with too many UIs. Their car (which now has a touchpad and lots of computer features) uses a different UI from their phone and computer and tablet and whatever. Even if the car has a superb UI, the problem is that it is different, something new to learn and remember.

One might fix this by having the same platform, be it iOS or Android on several of the devices, but that’s a tall order. Car vendors do not want to make a phone one one platform and tick off people used to the other platform.

The answer lies in something the car makers don’t like: Don’t put much of their own smarts in the car at all, and expect the user to slot their own mobile phone or tablet into the car. This might be done with something like Nokia’s “Terminal Mode” where the car’s screen and buttons can be taken over by the phone, or by not having a screen in the car at all, just a standard mounting place.

Some time ago I wrote that cars should stop coming with included radios as they used to 30 years ago, and let the slot in the dashboard where the radio and electronics go become a center for innovation. In particular innovation at the speed of consumer and mobile devices, not innovation at the speed of car companies. But there are too many pressures to stop this from happening. Car companies get to charge a lot for fancy radio and electronics systems in the cars, and they like this. And they like the control over the whole experience. But as they get more complaints they may realize that it’s not the right thing for them to be building. Especially not when the car (and the in-dash system) last for 10 to 15 years, while most consumer electronic devices are obsolete in 1-2 years.

There aren’t that many makes of cars, nor so many mobile platforms, so making custom apps for the car and the mobile platform isn’t that hard. In fact, I would expect you would see lots of competing aftermarket ones if they opened up the market to it. And open source ones too, built by fans of the particular cars.

Robocar projects, laws and other news

An update on the backlog of robocar related news caused by my recent travel and projects:

Nevada law

Many people have noticed the new law recently passed in Nevada which directs the Dept. of Transportation to create guidelines for the introduction of self-driving cars on Nevada roads. Here is the text of the law. Because Google, whom I consult for on robocars, helped instigate this law, I will refrain from comment, other than to repeat what I’ve said before: I predict that most transportation innovation will take place in robocars because they will be built from the ground up and bought by early adopters. The government need merely get out of the way and do very basic facilitation. This is very different from things like PRT and new transit lines, which require the government’s active participation and funding.

You’ll find lots of commentary on the story in major news media.  read more »

Volkswagen announces simple self-driving car

Dodge leading human resistance to robocars

Dodge has released a few interesting commercials for its Charger muscle car, somewhat prematurely pushing it as the antithesis of a robocar. Most amusing is the second ad which features an ugly car with a literal robot in the driver’s seat (something also seen in the Total Recall and I, Robot movies.) The first ad just has visuals of the car but actually mentions the Google car as one of the signs of increasing robot control. For some reason, the car, rather than the people behind it, is named the “leader of the human resistance.”

It’s easy to understand the sentiment behind these ads, particularly when you are trying to market a car as a powerful “man’s car” oriented to the thrill of driving. The people who want the car to drive itself are not like you, you want an exciting drive and this is the car for you, it says. (Other ads decry an online test drive, and cars that get lots of “boring” miles per gallon.)

The ad does pose an interesting question. When I talk, I often get people who say that they have no interest in a robocar (and that Americans won’t have interest in them) because they love to drive and would not give it up. I often ask back, “so do you love to commute?” It’s also clear from the example of New York City that Americans will certainly give up driving if it’s the right choice for their locale. People who grew up in L.A. don’t try to keep their car if they move to Manhattan, they do what makes sense for their new area.

Driving is fun, of course, particularly on an interesting road with a powerful car. Indeed, many find driving a stickshift even more fun in such circumstances, though they are almost gone from U.S. cars. (I’ve mostly owned stickshift cars though when I bought my most recent I ended up with an automatic where you can manually change the gears. But I find I don’t use the manual mode.) Being a passenger on windy roads is not nearly so much fun, and even makes many people a bit queasy, though this almost never happens to the driver even with the same moves.

Obviously I suspect the Dodge ad is wrong when it says that “robots will never take our cars.” But human driven cars will also exist for a long time, and not just in the muscle car market. Many people will enjoy — or even need — a car they can take control of when the road gets “interesting.” But in our ordinary driving, the road itself is rarely interesting. We may well take special trips where the software drives us to the fun road and we take over after that, though with a better safety system. On the other hand, when it comes to scenic drives, people will want to go slowly and be passengers, getting a chance to look out the windows and enjoy the view rather than concentrate on the road. We may see “tourist cars” in popular tourist spots which are either convertibles or have nearly transparent tops — reminding us perhaps of the bubble roof cars from the Jetsons — for those whose focus is on the view.

There will be a sector of the market that wholly buys into Dodge’s tongue-in-cheek message. I’m pretty confident in predicting that the opposite segment that embraces the technology will be more than large enough for it to find all the early adopters it needs. As people get used to the idea, it will then go mainstream, even if it never captures everybody.

Of course, I’m almost certain the Dodge Charger, like all other cars, is full of processors with tons of code. The fuel mixing system that gives it its power is computerized in a typical car. One technology “leading the resistance” against another.

This does mean a lot of changes for the automobile industry, as I wrote in my article on car design changes. Today a car’s price is remarkably correlated with its horsepower, which is part of the reason Dodge wants to advertise this way. Even when luxury is the real product, you will still find extra horsepower. This may change as people want comfort in their ordinary car, and only want horsepower in the vehicle they rent for the weekend.

Google Robocars at TED, Shanghai bubble cars, Robot Week, lives saved

Here’s a few Robocar updates.

First of all, the TED talk given by Sebastian Thrun, leader of the Google self-driving car team (disclaimer: they are a consulting client) is up on the TED web site. This is one of the short TED talks, so he does not get to go into a lot of depth, but notable is one of the first public showings of video of the Google car in action on ordinary city streets. (The first was at PodCarCity, but video was not made available on the web.)

At TED the team also set up a demonstration course on the roof of a parking lot, and allowed some attendees to ride and shoot videos, many of which are up on the web. While the car does perform well zooming a slalom course, and people have a lot of fun, the real accomplishment is what you see video during the talk.

Another “City of the future” video has appeared featuring robocars prominently. This Shanghai 2030 video plays out a number of interesting robocar aspects, though their immense elevated road network reminds me more of retro futurism. A few things I think will be different:

  • The people in the car sit side-by-side. I think face-to-face is much more useful. It’s more pleasant for conversation, and it allows for a narrower car which has huge advantages in road footprint and drag. Some people can’t stand facing backwards, and so there will still be side-by-side cars if you have two people like that, but I think a large fraction of cars will move to face-to-face, either narrow (for 2) or wide (for 3 or more.)
  • The video shows cool displays projected onto the windscreen. This “heads up” sort of display makes sense if you have to keep your eyes on the road while using the screen, but in these cars, the people don’t. On the other hand it’s true that some people get motion sick looking down while riding, but you can also put an opaque screen in the middle of the window in a robocar.

It’s National Robotics Week with lots of robot related events. In the Bay Area on Thursday, an all-day robotics demo day for kids and adults will take place at Stanford’s robotic car lab, so people will get a chance to see Junior and other Stanford robocars there.

Fatalities drop

The trend continues — last year U.S. road fatalities dropped again to 32,788. That’s a steady decline since over 43,000 5 years ago. And this is in spite of total vehicle miles going up. As a result, the death rate per 100 million miles is now 1.09, the lowest it has been in 60 years.

That’s very good news, though many forces fight for the credit. The leading contender seems to simply be that cars are getting safer in crashes, with better crumple zones and air bags, and more people wearing seatbelts. Medicine has also gotten better. Some will also be coming from better cars with safety systems like anti-lock brakes, crash-warnings and lane-departure warnings — precursors to robocar technology — but it would be wrong to assume these are a big component. Also worth noting that this happens in spite of the rise of people talking and texting while driving, though the secretary gives some credit to the recent laws banning this. But that doesn’t explain why the drop began in 2005.

It’s also odd that while fatalities drop almost everywhere, they’re actually up in New England by 18% and by 4% around the midwestern Great Lakes, and generally up around the north-east.

Google car demo, Toyota Vision and mind-driving

A few recent Robocar updates for you:

Google took its car down to the TED conference in Long Beach and did a few demo drives for people. In this mashable story you can catch some videos, inside and outside, of the car driving around a cone-based course on top of a parking lot near TED.

Toyota recently released a video with a vision of future transportation, including lots of self-driving cars in a city of the future. This short animated video has trucks in platoons and call-on-demand cars that come to your location and drive you around the city, or let you disengage and self-drive outside the automatic lane. In Toyota’s city there are special lanes which have guide markers and also inductive powering of the electric cars. While the powering may be valuable, I believe that the special infrastructure vision is an old one, and there are already several demonstrations of driving on existing roads without modification.

Once such demonstration comes from the “Made in Germany” team which certainly likes to come up with demos to attract attention. In this case they combined a headband that reads EEG/EMG signals with the controls of their robocar for what they call Brain Driver. The car does most of the driving, but signals from the headband can be used to tell it to go left or right at intersections, or accelerate and brake. My general experience of such EEG headbands has indicated that getting 5 unambiguous signals like that quickly is a tough job from pure EEG, so I am curious if they added some EMG (muscle) to it.

The brain driver is just a demo, but it does show one interesting technology, which is the ability for robocar technology to allow a vehicle to be driven through a very, very simple user interface — ie. just a few buttons or a joystick. I suspect that for people so disabled that they can only communicate via EEG — that’s majorly disabled — it will be better to wait for a full robocar technology that doesn’t require any human input for the driving part.

(Disclaimer: Google is a consulting client of mine.)

Blind man drives, sort of, with a robocar

A release from the National Federation for the Blind reports a blind person driving and avoiding obstacles on the Daytona speedway. They used a car from the TORC team at Virginia Tech, one of the competitors in the Darpa Grand Challenges. In effect, the blind driver replaced the “drive by wire” component of a robocar with a more intelligent and thinking human also able to feel acceleration and make some judgements. As the laser and other sensors in the car detected obstacles and turns, the computer sent audio and vibratory signals to the driver to turn, speed up or slow down.

While this demo is pretty simple, it was part of a larger project the NFB has to encourage computer and robotic technologies to let the blind do what the sighted can do. In my robocar roadmap I outlined a number of bodies who might promote and lobby for robocar technology, in particular the blind, so it’s good to see that step underway. They did it as well in 2009 with a simpler dune buggy.

This car did not use the fancy and expensive 64 line Velodyne LIDAR sensor that has become the norm on most other working robocars. The Virginia Tech team (Victor Tango) was the only one of the 6 teams to complete the urban challenge not to use that LIDAR. The car shown isn’t nearly as decorated with sensors as Victor Tango was, at least from looking at it visually, indicating good improvements in their system.

Working on Robocars at Google

As readers of this blog surely know, for several years I have been designing, writing and forecasting about the technology of self-driving “robocars” in the coming years. I’m pleased to announce that I have recently become a consultant to the robot car team working at Google.

Of course all that work will be done under NDA, and so until such time as Google makes more public announcements, I won’t be writing about what they or I are doing. I am very impressed by the team and their accomplishments, and to learn more I will point you to my blog post about their announcement and the article I added to my web site shortly after that announcement. It also means I probably won’t blog in any detail about certain areas of technology, in some cases not commenting on the work of other teams because of conflict of interest. However, as much as I enjoy writing and reporting on this technology, I would rather be building it.

My philosophical message about Robocars I have been saying for years, but it should be clear that I am simply consulting on the project, not setting its policies or acting as a spokesman.

My primary interest at Google is robocars, but many of you also know my long history in online civil rights and privacy, an area in which Google is often involved in both positive and negative ways. Indeed, while I was chairman of the EFF I felt there could be a conflict in working for a company which the EFF frequently has to either praise or criticise. I will be recusing myself from any EFF board decisions about Google, naturally.  read more »

Syndicate content