Robocars bringing you flying cars

Here’s a short new robocar essay, on Robocars helping bring about flying cars.

The thesis of the essay is simple. The quest for flying cars has always had to deal with the very difficult compromise between a vehicle that flies and one that drives. It’s just really hard to make one vehicle to do both.

The robocar (or rather robotaxi) solution is to not try to do both in one vehicle, but adapt to the idea you can hire a robotaxi to zip you right to your plane, and another one will be waiting on the taxiway when you land for a quick transition. It’s not the “take off from your house” vision, though. Of course, independently, the planes themselves could become computer-flown, as is almost the case today. If this happened, and the planes were able to do short takeoff and landing, and do it quietly (perhaps hybrid engines which use battery just for takeoff and landing) the world might accomodate airstrips in much more convenient places, even old stretches of road that don’t have overhead wires.

And don’t forget, I’ll be giving a robocar talk at BIL in Long Beach this weekend.

Indoor deliverbots on the rise

Here’s a nice story about the Kiva warehouse delivery robot now being used by major retailers like The Gap. Factory floor robots have been around for some time, and the field even has a name “automated vehicle guidance systems” but these newer deliverbots kick it up a notch, picking up shelves and bringing them to a central area for distribution, finding their way on their own with sensors.

We’re also seeing more hospital deliverbots, which — very slowly — take things around hospitals, roving the same corridors as the people. When a robot goes very slowly, people are willing to allow it to travel with them. The technological question is, how hard it is it to raise that speed and stay safe, and make people believe that they are safe.

Some applications care little about speed, and the slow robots already have a market there. We would not tolerate super slow robots on our streets, getting in the way of our cars, regularly.

One answer may be “extremely deferential” behaviour. Consider a deliverbot trundling down a low-volume street at 10 kph (6mph). It would be constantly checking for a vehicle coming up behind it, using radar, lasers and cameras. With LIDAR it would get about 90 meters of warning, with other sensors perhaps more. Say it detects a car coming behind it at 50 km/h (30mph). It has 8 seconds, during which it will will cover 22 meters. If it’s a small robot — and we might limit the robots to make them small — odds are reasonable that it might find a place in which to duck, such as a driveway. These robots aren’t parking, so they can move into driveway entrances, fire hydrant locations and many small non-parking spaces along the road.

Indeed, it need not find a place to pause on its own side of the road. If there is no immediate oncoming traffic, it could deek to the other side of the road for a hiding spot. Ideally it would be clever and not pick a driveway which has a moving car or even a car sensors reveal has the engine running.

Indeed, it’s not unreasonable for the deliverbot to simply move into the oncoming lane if it is clear, to let the human vehicle pass. This is a bit disconcerting to our usual sense of how things work — slow vehicles don’t move to the left for us to pass them — but there is no reason it could not be true. This is on urban streets where stopped vehicles, turning vehicles and even pedestrians are found in the middle of the street all the time, and drivers have plenty of time to stop for them. Nobody is going to hit such a vehicle, just get annoyed by it.

For the driver, they would see various slow deliverbots on the road ahead. But in all but unusual circumstances, by the time they got close to those robots, they would have pulled out of the lane, to pause in driveway entrances. The main risk is the driver might start to depend on this, and plow right into such a vehicle (at slow speeds) if there was no place for it to pull over. A deliverbot that doesn’t immediately see a place to pull over would probably start blinking a very obvious flashing light on the back, increasing the warnings if the vehicle does not slow down. It might also speed up a little bit, if safe to do so, to reach a spot to pause.

Why is this interesting? I think we’re much closer to building a vehicle that could go 10 kph on slow city streets, using LIDAR. If the vehicle is small and doesn’t weigh a great deal, it simply won’t be capable of doing much damage to people by hitting them. It could even be equipped with airbags on the outside should this ever become unavoidable. The main problems would be people hitting them, or being annoyed by them.

Once accepted, as safety technology improves, the speed can improve — eventually to a level where they don’t get in the way, other than in the sense that any other vehicle is in your way. There will always be those who want to go faster, and so the deference approach will always be useful.

Robotic Snowplow

I’ve added a new concept to the notes section — the Robo Snow Plow. In the article I describe the value of plows that can patrol the roads frequently without need for staff. Since you don’t want to delay for recharging, these might be fuel-tank powered.

However, another interesting concept is offered, namely the repurposing of idle vehicles as temporary plows. The call would go out, and idle vehicles would travel to a depot where a plow or snowblower would be placed on them. Then they would go out and plow and clear light covers of snow. When done, or when needed shortly by their owner, they would return to a depot and drop off the plow unit.

Ordinary cars would be light and not able to plow heavy snow, but there are so many idle cars that you could get to all the streets before things got too heavy. If you didn’t, you would need to assign heavier vehicles and real plows to those areas. And everybody’s driveways would be kept clear by robot snow blowers too. Cars on the roads would give real-time reports of where snow is falling and how thick it’s getting. Cities might be able to clear all their streets, sidewalks and driveways without needing extra vehicles.

Robocar talks at Future Salon, BIL

I’ll be giving a talk on Robocars on Friday, January 16th at the Bay Area Future Salon which is hosted at SAP, 3410 Hillview, Building D, Palo Alto CA. Follow the link for more details and RSVP information. Reception at 6, talks at 7. Eric Boyd will also talk on efficiency of transportation.

While I gave an early version of the Robocar talk at BIL (the unconference that parallels TED) last year, I think I will do an update there as well, along with a talk on the evils of cloud computing.

Notes from Robodevelopers conference

I gave a few visits to the RoboDeveloper’s conference the past few days. It was a modest sized affair, one of the early attempts to make a commercial robot development conference (it’s been more common to be academic in the past.) The show floor was modest, with just 3 short aisles, and the program modest as well, but Robocars were an expanding theme.

Sebastian Thrun (of the Stanford “Stanley” and “Junior” Darpa Grand Challenge teams) gave the keynote. I’ve seen him talk before but his talk is getting better. Of course he knows just about everything in my essays without having to read them. He continues (as I do) to put a focus on the death toll from human driving, and is starting to add an energy plank to the platform.

While he and I believe Robocars are the near-term computer project with the greatest benefit, the next speaker, Maja Mataric of USC made an argument that human-assistance robots will be even bigger. They are the other credible contender, though the focus is different. Robocars will save a million young people from death who would have been killed by human driving. Assist robots will improve and prolong the lives of many millions more of the aged who would die from ordinary decrepitude. (Of course, if we improve anti-aging drugs that might change.) Both are extremely worthy projects not getting enough attention.

Mataric said that while people in Robotics have been declaring “now is the hot time” for almost 50 years, she thinks this time she really means it. Paul Saffo, last weekend at Convergence 08, declared the same thing. He thinks the knee of the Robotics “S Curve” is truly upon us.

On the show floor, and demonstrated in a talk by Bruce Hall (of Velodyne Lidar and of Team DAD in the Darpa Grand Challenges) was Velodyne’s 64 line high resolution LIDAR. This sensor was on almost all the finishers in the Urban Challenge.

While very expensive today ($75,000) Hall believes that if he had an order for 10 million it would cost only hundreds without any great advances. With a bit of Moore’s law tech, it could even be less in short order.

Their LIDAR sees out to 120 meters. Hall says it could be tuned to go almost 300 meters, though of course resolution gets low out there. But even 120 meters gives you the ability to stop (on dry road) at up to 80 mph. Of course you need a bit of time to examine a potential obstacle before you hit the brakes so hard, so the more range the better, but this sensor is able to deliver with today’s technology.

The LIDAR uses a class 1 (eye-safe) infrared laser and Hall says it works in any amount of sunlight, and of course in darkness. He also says having many together on the road does not present a problem and did not at the Urban Challenge when cars came together. It might require something fancier to avoid deliberate jamming or interference. I suspect the military will pay for that technology to be developed.

This LIDAR, at a lower cost, seems good enough for a Whistlecar today, combined, perhaps with tele-valet remote operation. The LIDAR is good enough to drive at modest urban speeds (25mph) and not hit anything that isn’t trying to hit you. A tele-valet could get the whistlecar out of jams as it moves to drivers, filling stations and parking spots.

These forecasts of cheap, long-range LIDAR make me very optimistic about Whistlecars if we can get them approved for use in limited areas, notably parking lots, airports, gated communities and the like. We may be able to deploy this even sooner than some expect.

ARS Technica covers my Robocars articles

This week, as part of a 3-part series on the future of driving, ARS Technica has written a feature article derived from, and covering my series on Robocars. While it covers less than I do here, it does present it from a different perspective that you may find of interest.

Due to their large audience, there is also a stream of comments. Frankly, most indicate that the commenter has not read my underlying articles and my FAQ section, but one commenter did bring up something interesting that I have incorporated into my section on Freedom.

Their point was this: Today, the police use traffic laws as a way to diminish the rule of law. Everybody violates traffic laws regularly, so the police can always find an excuse to pull over a vehicle that they wish to pull over for other reasons. In essence, this ability has seriously eroded our privacy and freedom while we travel on the roads. Generally, robocars would never offer the police an excuse to detain any random driver. They would have to observe something inside the vehicle, perhaps, in order to have the probable cause needed to stop it. It would be more akin to being in your house. Of course, the police can often still find a way if they try hard enough, but this should make that task a great deal harder.

This does not mean that robocars still don’t present lots of privacy and freedom risks. We must work to avoid those. But this is an upside I hadn’t thought of.

There are also a lot of diggs on the Technica article, with their own comments, even more removed from my base articles, which never got too many diggs on their own.

If you didn’t see it, back a few months ago, the series was also featured on slashdot with a lively thread.

Parking in the robocar world

I’ve added a new Robocars article, this time expanding on ideas about how parking works in the world of robocars. The main conclusion is that parking ceases to be an issue, even in fairly parking sparse cities, because robocars can do so many things to increase, and balance capaacity.

One new idea detailed (inspired by some comments in another post) is an approach for both valet parking and multi-row triple-parked street parking. This algorithm takes advantage of the fact that all the robocars in a row can be asked to move in concert, thus moving a “gap” left in any line to the right space in just a few seconds. Thus if there is just one gap per row, any car can leave the dense parking area in seconds, even from deep inside, as the other cars move to create a gap for that car to leave.

But there are many more ideas of how parking just should not be an issue in a robocar world. That is, until people realize that, and we start converting parking lots to other uses because we don’t need them. Eventually the market will find a balance.

Read Parking and Robocars.

Robocars vs. PRT

Readers of this blog will know I used to talk a bit about Personal Rapid Transit (PRT) but have switched to a belief that it is now likely that robocars might fulfill the PRT vision before actual PRT can. To understand that, it is necessary to explore just why PRT has never really come about, in spite of being promoted, and possible for almost 40 years. The Morgantown Personal Rapid Transit has run since 1975, though it uses large vehicles and only has 5 stations, so it doesn’t realize the PRT vision of personal cars that go point to point in a network of stations. The ULTra system, with personal cars (which run on tires in a simple track) is being built at Heathrow airport.

I wrote an article on the reasons I have rejected classical, track-based PRT and then opened discussion on it in the Google transport-innovators group. The thread was quite vigourous. I had expected PRT fans to not welcome the concept, and to believe that robocars are still very distant science fiction, for indeed that is a valid objection.

I had not expected such a love of the general concept of shared transit that I would see people arguing that even if robocars were arriving soon, it would still be better to fill our streets with custom elevated guideways for a PRT system. Indeed, some advanced that we should not be building roads at all, that people would give up entirely on vehicle ownership in a PRT or robocar world and that providing garage to garage (or door to door) service was not necessary in the U.S. market, or could easily be done by just running PRT tracks to every house.

I understand the frustration in the PRT world. The ideas make a lot of sense, but no city will buy them. I contend that’s because municipal transit planners are highly averse to innovation. They are happy to buy 100 year old technology for their cities. They think farecards and web sites that can tell you when a bus will get to your stop are space-age innovations. Nobody wants to be the planner who bet on an untested technology that failed. That’s a career-ending risk. They would rather bet on old technology, and in spite of how well it is understood, see it go 100%, 200% or more over budget.

I predict that, once the technology becomes more real, robocars will win because they will be built bottom-up on a simple, already existing platform (roads) without any requirements to build infrastructure or run it. They will be bought by individuals, in particular by early adopters. Early adopters have money to burn on the latest hot new toys. They will happily waste it and buy the cooler model 8 months later. Cities don’t buy this way, they can’t. Cities buy technology that’s already obsolete before they even put it out for bid, and it’s very obsolete a decade later when it goes into operation.

Worse, transit requires monopolies. Either the city runs the transit as a monopoly, or it grants a franchise to a private company to build and run it. (That’s far more rare, since most transit runs with heavy subsidies in the USA.) Monopolies mean corruption (as they get large, they end up having more influence on the city officials than the customers do) and they mean monopoly-style customer service.

While robocars are still over a decade away, I fear that even though PRT could be built today, it will take it a decade to get over the marketing humps it has not managed to overcome in 40 years. By that time, robocars should be much closer to reality, and we’ll reach a point where even a transportation planner will realize the robocars will arrive soon enough to affect transit planning in the present.

Rather than being viewed as the enemy, robocars should be viewed as a way to realize the PRT vision without those deal-blocking new infrastructure requirements. But the PRT community is not yet ready to agree.

Read Robocars and PRT

A Week of Robocars

This special chapter in my series of essays on Robocars describes a fictional week in the Robocar world, with many created examples of how people might use Robocars and how their lives might change.

If you haven’t been following my essay on Robocars, this may be a good alternate entry to it. In a succinct way, it plays out many of the technologies I think are possible, more about the what than the how and why.

A Week of Robocar Stories

This ends this week-long series of postings on the Robocar essays. Though I have some new sidebars already written which I will introduce later. I realize this set of essays has been more longer than one typically sees in the short-attention-span blogosphere, but I think these ideas are among the more important and world-changing I’ve covered. I hope I’ll see more comments from the readers as you get more deeply into it.

Robocars: The end of Urban Transit

You may have seen in earlier blog posts my discussion of the energy efficiency of U.S. transit. I started that investigation because as I learned how inefficient most transit systems are (due to light loads outside of rush hour,) I realized that ultralight electric cars, enabled by Robocars, are more efficient than any transit system. Who would take transit if a fast, comfortable, efficient vehicle will take you directly from A to B? This drives chapter eight, about:

The end of urban mass transit

(This one gets the people who think they love transit, rather than loving efficient transportation, in a tizzy.)

Robocars: Deliverbots -- computer driven trucks

For part seven of my series on Robocars, I now consider the adjunct technology I am calling Deliverbots — namely robot driven trucks and delivery vehicles, with no people inside. These turn out to have special consequences of their own. Read:


Robocars: When?

For part six of my series on Robocars, consider:

When can robocars happen?

I discuss what predictions we can make about how long the Robocar future will take. While there are many technological challenges, the biggest barriers may be political, and even harder to predict.

We don’t seem to have the Jetson’s flying cars yet. What goes wrong with these predictions, and can we figure it out?

Downsides to Robocars

For part five of my series on Robocars, it’s time to understand how this is not simply a utopian future. Consider now:

The Downsides of Robocars

Every good technology has unintended consequences and downsides. Here I outline a few, but there will be more than nobody sees today. I still judge the immense upsides to be worth it, but you can judge yourself.

Car design changes due to Robocars

Robocars will suggest a great number of possible changes in the way we design and market cars. I now encourage you to read:

Automobile design changes due to Robocars

The big green benefit of robocars comes in large part from the freedom they offer in redesigning the automobile, in particular the ability to specialize automobiles to specific tasks, because they can be so readily hired on demand. Or to specific fuels in certain areas, or for sleeping, and much more.

Robocars: Roadblocks on the way

For part three of my series of Robocars, now consider:

Roadblocks on the way to Robocars

A lot of obstacles must be overcome before Robocars can become reality. Some we can see solutions for, others are as yet unsolved. It’s not going to be easy, which is why I believe an Apollo style dedication is necessary.

Robocars: The Roadmap to getting there

In part two of my series on Robocars, let me introduce:

The Roadmap to Robocars

Here I outline a series of steps along the way to the full robocar world. We won’t switch all at once, and many more limited technologies can be marketed before the day when most cars on the road are computer driven. Here are some ideas of what those steps could be — or already are.

Robocars are the future

My most important essay to date

Today let me introduce a major new series of essays I have produced on “Robocars” — computer-driven automobiles that can drive people, cargo, and themselves, without aid (or central control) on today’s roads.

It began with the DARPA Grand Challenges convincing us that, if we truly want it, we can have robocars soon. And then they’ll change the world. I’ve been blogging on this topic for some time, and as a result have built up what I hope is a worthwhile work of futurism laying out the consequences of, and path to, a robocar world.

Those consequences, as I have considered them, are astounding.

  • It starts with saving a million young lives every year (45,000 in the USA) as well as untold injury in suffering.
  • It saves trillions of dollars wasted over congestion, accidents and time spent driving.
  • Robocars can solve the battery problem of the electric car, making the electric car attractive and inexpensive. They can do the same for many other alternate fuels, too.
  • Electric cars are cheap, simple and efficient once you solve the battery/range problems.
  • Switching most urban driving to electric cars, especially ultralight short-trip vehicles means a dramatic reduction in energy demand and pollution.
  • It could be enough to wean the USA off of foreign oil, with all the change that entails.
  • It means rethinking cities and manufacturing.
  • It means the death of old-style mass transit.

All thanks to a Moore’s law driven revolution in machine vision, simple A.I. and navigation sponsored by the desire for cargo transport in war zones. In the way stand engineering problems, liability issues, fear of computers and many other barriers.

At 33,000 words, these essays are approaching book length. You can read them all now, but I will also be introducing them one by one in blog posts for those who want to space them out and make comments. I’ve written so much because I believe that of all short term computer projects available to us, no modest-term project could bring more good to the world than robocars. While certain longer term projects like A.I. and Nanotech will have grander consequences, Robocars are the sweet spot today.

I have also created a new Robocars topic on the blog which collects my old posts, and will mark new ones. You can subscribe to that as a feed if you wish. (I will cease to use the self-driving cars blog tag I was previously using.)

If you like what I’ve said before, this is the big one. You can go to the:

Master Robocar Index (Which is also available via

or jump to the first article:

The Case for Robot Cars

You may also find you prefer to be introduced to the concept through a series of stories I have developed depicting a week in the Robocar world. If so, start with the stories, and then proceed to the main essays.

A Week of Robocars

These are essays I want to spread. If you find their message compelling, please tell the world.

Robodelivery and high-end, low-usage equipment rental (and NPR interview)

Earlier on, I identified robot delivery vehicles as one of the steps on the roadmap to robot cars. In fact, these are officially what the DARPA grand challenges really seek, since the military wants robots that can move things through danger zones without putting soldiers at risk.

Deliverbots may well be allowed on the road before fully automated robotaxis for humans because there are fewer safety issues. Deliverbots can go more slowly, as most cargo is not super-urgent. If they go slower, and have a low weight limit, it may be the case that they can’t cause much harm if they go astray. Obviously if a deliverbot crashes into an inanimate object, it just cost money and doesn’t injure people. The deliverbot might be programmed to be extra-cautious and slow around anything like a person. As such, it might be allowed on the road sooner.

I gave a talk on Robot cars at the BIL conference, and an attendee came up to suggest the deliverbots enable a new type of equipment rental. Because they can bring you rental equipment quickly, cheaply and with no hassle, they make renting vastly more efficient and convenient. People will end up renting things they would never consider renting today. Nowadays you only rent things you really need which are too expensive or bulky to own.

By the way, the new NPR morning show the “Bryant Park Project” decided to interview a pair of speakers, one from TED and one from BIL, so I talked about my robot cars talk. You can listen to the segment or follow links to hear the whole show.

It was suggested even something as simple as a vacuum cleaner could become a rental item. Instead of buying a $200 vacuum to clean your floors once a week, you might well rent a super-high quality $2,000 unit which comes to you with short notice via deliverbot. This would also be how you might treat all sorts of specialized, bulky or expensive tools. Few will keep their own lathe, band saw or laser engraver, but if you can get one in 10 minutes, you would never need to.

(Here in silicon valley, an outfit called Tech Shop offers a shop filled with all the tools and toys builders like, for a membership fee and materials cost. It’s great for those who are close to it or want to trek there, but this could be better. This in turn would also let us make better use of the space in our homes, not storing things we don’t really need to have.

Predictive traction control

Yesterday I wrote about predictive suspension, to look ahead for bumps on the road and ready the suspension to compensate. There should be more we can learn by looking at the surface of the road ahead, or perhaps touching it, or perhaps getting telemetry from other cars.

It would be worthwhile to be able to estimate just how much traction there is on the road surfaces the tires will shortly be moving over. Traction can be estimated from the roughness of dry surfaces, but is most interesting for wet and frozen surfaces. It seems likely that remote sensing can tell the temperature of a surface, and whether it is wet or not. Wet ice is more slippery than colder ice. It would be interesting to research techniques for estimating traction well in front of the car. This could of course be used to slow the car down to the point that it can stop more easily, and to increase gaps between cars. However, it might do much more.

A truly accurate traction measurement could come by actually moving wheels at slightly different speeds. Perhaps just speeding up wheels at two opposite corners (very slightly) or slowing them down could measure traction. Or perhaps it would make more sense to have a small probe wheel at the front of the car that is always measuring traction in icy conditions. Of course, anything learned by the front wheels about traction could be used by the rear wheels.

For example, even today an anti-lock brake system could, knowing the speed of the vehicle, notice when the front wheels lock up and predict when the rear wheels will be over that same stretch of road. Likewise if they grip, it could be known as a good place to apply more braking force when the rear wheels go over.

In addition, this is something cars could share information about. Each vehicle that goes over a stretch of road could learn about the surface, and transmit that for cars yet to come, with timestamps of course. One car might make a very accurate record of the road surface that other cars passing by soon could use. If for nothing else, this would allow cars to know what a workable speed and inter-car gap is. This needs positioning more accurate that GPS, but that could easily be attained with mile marker signs on the side of the road that an optical scanner can read, combined with accurate detection of the dotted lines marking the lanes. GPS can tell you what lane you're in if you can't figure it out. Lane markers could themselves contain barcodes if desired -- highly redundant barcodes that would tolerate lots of missing pieces of course.

This technology could be applied long before the cars drive themselves. It's a useful technology for a human driven car where the human driver gets advice and corrections from an in-car system. "Slow down, there's a patch of ice ahead" could save lives. I've predicted that the roadmap to the self-driving car involves many incremental improvements which can be sold in luxury human-driven cars to make them safer and eventually accident proof. This could be a step.

Predictive suspension

I’m not the first to think of this idea, but in my series of essays on self driving cars I thought it would be worth discussing some ideas on suspension.

Driven cars need to have a modestly tight suspension. The driver needs to feel the road. An AI driven car doesn’t need that, so the suspension can be tuned for the maximum comfort of the passengers. You can start bu just making it much softer than a driver would like, but you can go further.

There are active suspension systems that use motors, electromagnets or other systems to control the ride. Now there are even products to use ferrofluids, whose viscosity can be controlled by magnetic fields, in a shock absorber.

I propose combining that with a scanner which detects changes in the road surface and predicts exactly the right amount of active suspension or shock absorption needed for a smooth ride. This could be done with a laser off the front bumper, or even mechanically with a small probe off the front with its own small wheel in front of the main wheel.

As such systems improve, you could even imagine it making sense to give a car more than 4 wheels. With the proper distribution of wheels, it could become possible, if a bump is coming up for just one or two of the wheels to largely decouple the vehicle from those wheels and put the weight on the others. With this most bumps might barely affect the ride. This could mean a very smooth ride even on a bumpy dirt or gravel road, or a poorly maintained road with potholes. (The decoupling would also stop the pothole from doing much damage to the tire.)

As a result, our self-driving cars could give us another saving, by reducing the need for spending on road maintenance. You would still need it, but not as much. Of course you still can’t get rid of hills and dips.

I predict that some riders at least will be more concerned with ride comfort than speed. If their self-driving car is a comfortable work-pod, with computer/TV and phone, time in the car will not be “downtime” if the ride is comfortable enough. Riders will accept a longer trip if there are no bumps, turns and rapid accelerations to distract them from reading or working.

Now perfect synchronization with traffic lights and other vehicles will avoid starts and stops. But many riders will prefer very gradual accelerations when starts and stops are needed. They will like slower, wider turns with a vehicle which gimbals perfectly into the turn. And fewer turns to boot. They’ll be annoyed at the human driven cars on the road which are more erratic, and force distracting changes of speed or vector. Their vehicles may try to group together, and avoid lanes with human drivers, or choose slightly slower routes with fewer human drivers.

The cars will warn their passengers about impending turns and accelerations so they can look up — the main cause of motion sickness is a disconnect between what your eyes see and your inner ear feels, so many have a problem reading or working in an accelerating vehicle.

People like a smooth, distraction free trip. In Japan, the Shinkansen features the express Nozomi trains which include cars where they do not make announcements. You are responsible for noticing your stop and getting off. It is a much nicer place to work, sleep or read.

Syndicate content