Transportation

Hotel rooms and temporary apartments need to adapt better for the digital nomad

I’ve been on the road for the last month, and there’s more to come. Right now I’m in Amsterdam for a few hours, to be followed by a few events in London, then on to New York for Singularity U’s Exponential Finance conference, followed by the opening of our Singularity University Graduate Studies Program for 2014. (You can attend our opening ceremony June 16 by getting tickets here — it’s always a good crowd)

But while on the road, let me lament about what’s missing from so many of the hotel rooms and AirBnB apartments I’ve stayed in, which is an understanding of what digital folks, especially digital couples need.

Desk space

Yes, rooms are small, especially in Europe, and one thing they often sacrifice is desk space. In particular, desk space for two people with laptops. This is OK if you’ve ditched the laptop for a tablet, but many rooms barely have desk space enough for one, or the apartments have no desk, only the kitchen table. And some only have one chair.

We need desk space, and we need a bit of room to put things, and we need it for two. Of course, there should be plugs at desk level if you can — the best thing is to have a power strip on the desk, so we can plug in laptops, camera chargers, phone chargers and the like.

Strangely, at least half the hotels I stay in have a glass tabletop for their desk. The once surface my mouse won’t work on. Yes, I hate the trackpad so I use a mouse if I am doing any serious computing. I can pull over a piece of paper or book to be a mousepad, but this is silly.

Monitor

Really sweet, but rarely seen, is an external monitor. Nice 24” computer monitors cost under $150 these days, so there should be one — or two. And there should be cables (HDMI and VGA at least) because while I bring cables sometimes, you never know which cable the monitor in a room will use. Sometimes you can plug into the room’s TV — but sometimes it has been modified so you can’t. It’s nice if you can, though a TV on the while is not a great monitor for working. It’s OK for watching video if I wanted to.

For extra credit, perhaps the TV can support some of the new video over wireless protocols, like Miracast, Widi or Apple’s TV protocol, to make it easy to connect devices, even phones and tablets.

Sadly, there is no way yet for you to provide me with a keyboard or mouse in the room that I could trust.

Power

Though when it comes to phone chargers, many use their phone as their alarm clock, and so they want it by the bed. There should be power by the bed, and it should not require you to unplug the bedside lamp or clock radio.

Another nice touch would be plugs or power strips with the universal multi-socket that accepts all the major types of plugs. Sure, I always have adapters but it’s nice to not have to use them. My stuff is all multi-voltage of course.

Luggage holders

Most hotel rooms come with a folding luggage stand, which is good. But they should really come with two. Couples and families routinely have 3 bags. A hotel should know that if you’ve booked a double room, you probably want at least two. Sometimes I have called down to the desk to get more and they don’t have any more — just one in each room. If you are not going to put them in the room, the bell desk should be able to bring up any you need.

Free Wifi (and wired) without a goddamned captive portal

I’ve ranted about this before, but captive portals which hijack your browser — thus breaking applications and your first use — are still very common. Worse, some of them reset every time you turn off your computer — or your phone, and you have to re-auth. Some portals are there to charge you, but I find that not an excuse any more. When hotels charge me for internet, I ask them how much the electricity and water are in the room. It’s past time that hotels that charge for internet just have that included in the online shopping sites like Kayak and Tripadvisor when you search for hotels. Or at the least I should be able to check a box for “show me the price with internet, and any taxes and made-up resort fees” so I can compare the real price.

But either way, the captive portals break too many things. (Google Glass can’t even work at all with them.) Cheap hotels give free wifi with no portal — this is a curse of fancier hotels. If you want sell premium wifi, so be it — but let me log into the basic one with no portal, and then I can go to a URL where I can pay for the upgrade. If you insist give me really crappy internet, 2G speed internet, with no portal, so that things at least work, though slowly, until I upgrade.

If you need a password, use WPA2. You can set up a server so people enter their room number and name with WPA2-Enterprise. You can meet certain “know your user” laws that force these portals on people that way.

And have wired internet — with a cable — if you can. At a desk, it’s more reliable and has no setup programs and needs no password or portal at all.

Why Google's "ridiculous" looking car is brilliant

It’s not too surprising that the release of images of Google’s prototype robocar have gotten comments like this:

Revolutionary Tech in a Remarkably Lame Package from Wired

A Joy Ride in Google’s Clown Car says Re/Code

I’ve also seen comparisons to the Segway, and declarations that limited to 25 mph, this vehicle won’t get much adoption or affect the world much.

Google’s own video starts with a senior expressing that it’s “cute.”

I was not involved in the specifics of design of this vehicle, though I pushed hard as I could for something in this direction. Here’s why I think it’s the right decision.

First of all, this is a prototype. Only 100 of this design will be made, and there will be more iterations. Google is all about studying, learning and doing it again, and they can afford to. They want to know what people think of this, but are not scared if they underestimate it at first.

Secondly, this is what is known as a “Disruptive Technology.” Disruptive technologies, as described in the Silicon Valley bible “The Innovators Dilemma” are technologies that seem crazy and inferior at first. They meet a new need, not well understood by the incumbent big companies. Those big companies don’t see it as a threat — until years later, they are closing their doors. Every time a disruptive technology takes over, very few of the established players make it through to the other side. This does not guarantee that Google will dominate or crush those companies, or that everything that looks silly eventually wins. But it is a well established pattern.

This vehicle does not look threatening — not to people on the street, and not to existing car companies and pundits who don’t get it. Oh, there are many people inside those car companies who do get it, but the companies are incapable of getting it in their bones. Even when their CEOs get it, they can’t steer the company 90 degrees — there are too many entrenched forces in any large company. The rare exception are founder-led companies (like Google and Facebook and formerly Apple and Microsoft) where if the founder gets it, he or she can force the company to get it.

Even large companies who read this blog post and understand it still won’t get it, not most of the time. I’ve talked to executives from big car companies. They have a century of being car companies, and knowing what the means. Google, Tesla and the coming upstarts don’t.

One reason I will eventually move away from my chosen name for the technology — robocar — along with the other popular names like “self-driving car” is that this future vehicle is not a car, not as we know it today. It is no more a “driverless car” than a modern automobile is a horseless carriage. 100 years ago, the only way they could think of the car was to notice that there was no horse. Today, all many people notice about robocars is that no human is driving. This is the thing that comes after the car.

Some people expected the car to look more radical. Something like the Zoox or ATMBL by Mike and Maaike (who now work in a different part of Google.) Cars like those will come some day, but are not the way you learn. You start simple, and non threatening, and safe. And you start expensive — the Google prototype still has the very expensive Velodyne LIDAR on it, but trust me, very soon LIDAR is going to get a lot less expensive.

The low speed is an artifact of many things. You want to start safe, so you limit where you go and how fast. In addition, US law has a special exception from most regulations for electric vehicles that can’t go more than 25mph and stick to back roads. Some may think that’s not very useful (turns out they are wrong, it has a lot of useful applications) but it’s also a great way to start. Electric vehicles have another big advantage in this area. Because you can reverse electric motors, they can work as secondary brakes in the event of failure of the main brake system, and can even be secondary steering in case of failure of the steering system at certain speeds. (Google has also said that they have two steering motors in order to handle the risk of failure of one steering motor.) Electric vehicles are not long-range enough to work as taxis in a large area, but they can handle smaller areas just fine.

If you work in the auto industry, and you looked at this car and saw a clown car, that’s a sign you should be afraid.

Google to custom make its own car with no steering wheel

In what is the biggest announcement since Google first revealed their car project, it has announced that they are building their own car, a small low-speed urban vehicle for two with no steering wheel, throttle or brakes. It will act as a true robocar, delivering itself and taking people where they want to go with a simple interface. The car is currently limited to 25mph, and has special pedestrian protection features to make it even safer. (I should note that as a consultant to that team, I helped push the project in this direction.)

This is very different from all the offerings being discussed by the various car companies, and is most similar to the Navia which went on sale earlier this year. The Navia is meant as a shuttle, and up to 12 people stand up in it while it moves on private campus roads. It only goes 20 km/h rather than the 40 km/h of Google’s new car. Google plans to operate their car on public roads, and will have non-employees in test prototype vehicles “very soon.”

This is a watershed moment and an expression of the idea that the robocar is not a car but the thing that comes after the car, as the car came after the horse. Google’s car is disruptive, it seems small and silly looking and limited if you look at it from the perspective of existing car makers. That’s because that’s how the future often looks.

I have a lot to say about what this car means, but at the same time, very little because I have been saying it since 2007. One notable feature (which I was among those pushing for inside) is a soft cushion bumper and windshield. Clearly the goal is always to have the car never hit anybody, but it can still happen because systems aren’t perfect and sometimes people appear in front of cars quickly making it physically impossible to stop. In this situation, cars should work to protect pedestrians and cyclists. Volvo and Autoliv have an airbag that inflates on the windshield bars, which are the thing that most often kills a cyclist. Of the 1.2 million who are killed in car accidents each year, close to 500,000 are pedestrians, mostly in the lower income nations. These are first steps in protecting them as well as the occupants of the car.

The car has 2 seats (side-by-side) and very few controls. It is a prototype, being made at first in small quantities for testing.

More details, and other videos, including a one of Chris Urmson giving more details, can be found at the new Google Plus page for the car. Also of interest is this interview with Chris.

I’m in Milan right now about to talk to Google’s customers about the car — somewhat ironic — after 4 weeks on the road all over Europe. 2 more weeks to go! I will be in Copenhagen, Amsterdam, London and NYC in the coming weeks, after having been in NYC, Berlin, Krakow, Toronto, Amsterdam, Copenhagen, Oslo, the fjords and Milan. In New York, come see me at Singularity U’s Exponential Finance conference June 10-11.

Google announces urban driving milestone

News from Google’s project is rare, but today on the Google blog they described new achievements in urban driving and reported a number of 700,000 miles. The car has been undergoing extensive testing in urban situations, and Google let an Atlantic reporter get a demo of the urban driving which is worth a read.

You will want to check out the new video demo of urban operations:

While Google speakers have been saying for a while that their goal is a full-auto car that does more than the highway, this release shows the dedication already underway towards that goal. It is the correct goal, because this is the path to a vehicle that can operate vacant, and deliver, store and refuel itself.

Much of the early history of development has been on the highway. Most car company projects have a focus on the highway or traffic jam situations. Google’s cars were, in years past, primarily seen on the highways. In spite of the speed, highway driving is actually a much easier task. The traffic is predictable, and the oncoming traffic is physically separated. There are no cyclists, no pedestrians, no traffic lights, no stop signs. The scariest things are on-ramps and construction zones. At low speed the highway could even be considered a largely solved problem by now.

Highway driving accounts for just over half of our miles, but of course not our hours. A full-auto car on the highway delivers two primary values: Fewer accidents (when delivered) and giving productive time back to the highway commuter and long distance traveller. This time is of no small value, of course. But the big values to society as a whole come in the city, and so this is the right target. The “super-cruise” products which require supervision do not give back this time, and it is debatable if they give the safety. Their prime value is a more relaxing driving experience.

Google continues to lead its competitors by a large margin. (Disclaimer: They have been a consulting client of mine.) While Mercedes — which is probably the most advanced of the car companies — has done an urban driving test run, it is not even at the level that Google was doing in 2010. It is time for the car makers to get very afraid. Major disruption is coming to their industry. The past history of high-tech disruptions shows that very few of the incumbent leaders make it through to the other side. If I were one of the car makers who doesn’t even have a serious project on this, I would be very afraid right now.

New regulations are banning the development of delivery robots

Many states and jurisdictions are rushing to write laws and regulations governing the testing and deployment of robocars. California is working on its new regulations right now. The first focus is on testing, which makes sense.

Unfortunately the California proposed regulations and many similar regulations contain a serious flaw:

The autonomous vehicle test driver is either in immediate physical control of the vehicle or is monitoring the vehicle’s operations and capable of taking over immediate physical control.

This is quite reasonable for testing vehicles based on modern cars, which all have steering wheels and brakes with physical connections to the steering and braking systems. But it presents a problem for testing delivery robots or deliverbots.

Delivery robots are world-changing. While they won’t and can’t carry people, they will change retailing, logistics, the supply chain, and even going to the airport in huge ways. By offering very quick delivery of every type of physical goods — less than 30 minutes — at a very low price (a few pennies a mile) and on the schedule of the recipient, they will disrupt the supply chain of everything. Others, including Amazon, are working on doing this by flying drone, but for delivery of heavier items and efficient delivery, the ground is the way to go.

While making fully unmanned vehicles is more challenging than ones supervised by their passenger, the delivery robot is a much easier problem than the self-delivering taxi for many reasons:

  • It can’t kill its cargo, and thus needs no crumple zones, airbags or other passive internal safety.
  • It still must not hurt people on the street, but its cargo is not impatient, and it can go more slowly to stay safer. It can also pull to the side frequently to let people pass if needed.
  • It doesn’t have to travel the quickest route, and so it can limit itself to low-speed streets it knows are safer.
  • It needs no windshield or wheel, and can be small, light and very inexpensive.

A typical deliverbot might look like little more than a suitcase sized box on 3 or 4 wheels. It would have sensors, of course, but little more inside than batteries and a small electric motor. It probably will be covered in padding or pre-inflated airbags, to assure it does the least damage possible if it does hit somebody or something. At a weight of under 100lbs, with a speed of only 25 km/h and balloon padding all around, it probably couldn’t kill you even if it hit you head on (though that would still hurt quite a bit.)

The point is that this is an easier problem, and so we might see development of it before we see full-on taxis for people.

But the regulations do not allow it to be tested. The smaller ones could not fit a human, and even if you could get a small human inside, they would not have the passive safety systems in place for that person — something you want even more in a test vehicle. They would need to add physical steering and braking systems which would not be present in the full drive-by-wire deployment vehicle. Testing on real roads is vital for self-driving systems. Test tracks will only show you a tiny fraction of the problem.

One way to test the deliverbot would be to follow it in a chase car. The chase car would observe all operations, and have a redundant, reliable radio link to allow a person in the chase car to take direct control of any steering or brakes, bypassing the autonomous drive system. This would still be drive-by-wire(less) though, not physical control.

These regulations also affect testing of full drive-by-wire vehicles. Many hybrid and electric cars today are mostly drive-by-wire in ordinary operations, and the new Infiniti Q50 features the first steer-by-wire. However the Q50 has a clutch which, in the event of system failure, reconnects the steering column and the wheels physically, and the hybrids, even though they do DBW regenerative braking for the first part of the brake pedal, if you press all the way down you get a physical hydraulic connection to the brakes. A full DBW car, one without any steering wheel like the Induct Navia, can’t be tested on regular roads under these regulations. You could put a DBW steering wheel in the Navia for testing but it would not be physical.

Many interesting new designs must be DBW. Things like independent control of the wheels (as on the Nissan Pivo) and steering through differential electric motor torque can’t be done through physical control. We don’t want to ban testing of these vehicles.

Yes, teams can test regular cars and then move their systems down to the deliverbots. This bars the deliverbots from coming first, even though they are easier, and allows only the developers of passenger vehicles to get in the game.

So let’s modify these regulations to either exempt vehicles which can’t safely carry a person, or which are fully drive-by-wire, and just demand a highly reliable DBW system the safety driver can use.

Can they make a better black box pinger?

I wrote earlier on how we might make it easier to find a lost jet and this included the proposal that the pingers in the black boxes follow a schedule of slowing down their pings to make their batteries last much longer.

In most cases, we’ll know where the jet went down and even see debris, and so getting a ping every second is useful. But if it’s been a week, something is clearly wrong, and having the pinger last much longer becomes important. It should slow down, eventually dropping to intervals as long as one minute, or even an hour, to keep it going for a year or more.

But it would be even more valuable if the pinger was precise about when it pinged. It’s easy to get very accurate clocks these days, either sourced from GPS chips (which cost $5) or just synced on occasion from other sources. Unlike GPS transmitter clocks, which must sync to the nanosecond, here even a second of drift is tolerable.

The key is that the receiver who hears a ping must be able to figure out when it was sent, because if they can do that they can get the range, and even a very rough range is magic when it comes to finding the box. Just 2 received pings from different places with range will probably find the box.

I presume the audio signal is full of noise and you can’t encode data into it very well, but you can vary the interval between pings. For example, while a pinger might bleep every second, every 30 seconds it could ping twice in a second. Any listener who hears 30 seconds of pings would then know the pinger’s clock and when each ping was sent. There could be other variations in the intervals to help pin the time down even better, but it’s probably not needed. In 30 seconds, sound travels 28 miles underwater, and it’s unlikely you would hear the ping from that far away.

When the ping slows down as battery gets lower, you don’t need the variation any more, because you will know that pings are sent at precise seconds. If pings are down to one a minute, you might hear just one, but knowing it was sent at exactly the top of the minute, you will know its range, at least if you are within 50 miles.

Of course things can interfere here — I don’t know if sound travels with such reliable speed in water, and of course, waves bounce off the sea floor and other things. It is possible the multipath problem for sound is much worse than I imagine, making this impossible. Perhaps that’s why it hasn’t been done. This also adds some complexity to the pinger which they may wish to avoid. But anything that made the pings distinctive would also allow two ships tracking the pings to know they had both heard the same particular ping and thus solve for the location of the pinger. Simple designs are possible.

Two way pinger

If you want to get complex of course you could make the pinger smart, and listening for commands from outside. Listening takes much less power, and a smart pinger could know not to bother pinging if it can’t hear the ship searching for it. Ships can ping with much more volume, and be sure to be heard. While there is a risk a pinger with a broken microphone might not understand it has a broken microphone, otherwise, a pinger should sit silent until it hears request pings from ships, and answer those. It could answer them with much more power and thus more range, because it would only ping when commanded to. It could sit under the sea for years until it heard a request from a passing ship or robot. (Like the robots made by my friends at Liquid Robotics, which cruise unmanned at 2 knots using wave power and could spend years searching an area.)

The search for MH370 has cost hundreds of millions of dollars, so this is something worth investigating.

Other more radical ideas might be a pinger able to release small quantities of radioactive material after waiting a few weeks without being found. Or anything else that can be detected in extremely minute concentrations. Spotting those chemicals could be done sampling the sea, and if found soon enough — we would know exactly when they would be released — could help narrow the search area.

Track the waves

I will repeat a new idea I added to the end of the older post. As soon as the search zone is identified, a search aircraft should drop small floating devices with small radio transmitters good to find them again at modest range. Drop them as densely as you can, which might mean every 10 miles or every 100 miles but try to get coverage on the area.

Then, if you find debris from the plane, do a radio hunt for the nearest such beacon. When you find it, or others, you can note their serial number, know where they were dropped, and thus get an idea of where the debris might have come from. Make them fancier, broadcasting their GPS location or remembering it for a dump when re-collected, and you could build a model of motion on the surface of the sea, and thus have a clue of how to track debris back to the crash site. In this case, it would have been a long time before the search zone was located, but in other cases it will be known sooner.

Conspiracy theory!

Reporting has not been clear, but it appears that the ships which heard the pings did so in the very first place they looked. With a range of only a few miles, that seems close to impossibly good luck. If it turns out they did hear the last gasp of the black boxes, this suggests an interesting theory.

The theory would be that some advanced intelligence agencies have always known where the plane went down, but could not reveal that because they did not want reveal their capabilities. A common technique in intelligence, when you learn something important by secret means, is to then engineer another way to learn that information, so that it appears it was learned through non-secret means or luck. In the war, for example, spies who broke enemy codes and learned about troop movements would then have a “lucky” recon plane “just happen” to fly over the area, to explain how you knew where they were. Too much good luck and they might get suspicious, and might learn you have broken their crypto.

In this case the luck is astounding. Yes, it is the central area predicted by the one ping found by Inmarsat, but that was never so precise. In this case, though, all we might discern — if we believe this theory at all — is that maybe, just maybe, some intelligence agency among the countries searching has some hidden ways to track aircraft. Not really all that surprising as a bit of news, though.

Let’s hope they do find what’s left — but if they do, it seems likely to me it happened because the spies know things they aren’t telling us.

Robocar Prize in India, New Vislab car

I read a lot of feeds, and there are now scores of stories about robocars every week. Almost every day a new publication gives a summary of things. Here, I want to focus on things that are truly new, rather than being comprehensive.

Mahindra “Rise” Prize

The large Indian company Mahindra has announced a $700,000 Rise prize for robocar development for India’s rather special driving challenges. Prizes have been a tremendous boost to robocar development and DARPA’s contests changed the landscape entirely. Yet after the urban challenge, DARPA declared their work was done and stopped, and in spite of various efforts to build a different prize at the X-Prize foundation, the right prize has never been clear. China has annual prizes and has done so for several years, but they get little coverage outside of China.

An Indian prize has merit because driving in India is very much different, and vastly more chaotic than most of the west. As such, western and east Asian companies are unlikely to spend a lot of effort trying to solve the special Indian problems first. It makes sense to spur Indian development, and of course there is no shortage of technical skill in India.

Many people imagine that India’s roads are so chaotic that a computer could never drive on them. There is great chaos, but it’s important to note that it’s slow chaos, not fast chaos. Being slow makes it much easier to be safe. Safety is the hard part of the problem. Figuring out just what is happening, playing subtle games of chicken — these are not trivial, but they can be solved, if the law allows it.

I say if the law allows it because Indians often pay little heed to the traffic law. A vehicle programmed to strictly obey the law will probably fail there without major changes. But the law might be rewritten to allow a robot to drive the way humans drive there, and be on an open footing. The main challenge is games of chicken. In the end, a robot will yield in a game of chicken and humans will know that and exploit it. If this makes it impossible for the robot to advance, it might be programmed to “yield without injury” in a game of chicken. This would mean randomly claiming territory from time to time, and if somebody else refuses to yield, letting them hit you, gently. The robot would use its knowledge of physics to keep the impact low enough speed to cause minor fender damage but not harm people. If at fault, the maker of the robot would have to pay, but this price in damage to property may be worthwhile if it makes the technology workable.

The reason it would make things workable is that once drivers understood that, at random, the robot will not yield (especially if it has the right-of-way) and you’re going to hit it. Yes, they might pay for the damage (if you had the right of way) but frankly that’s a big pain for most people to deal with. People might attempt insurance fraud and deliberately be hit, but they will be recorded in 3D, so they had better be sure they do it right, and don’t do it more than once.

Of course, the cars will have to yield to pedestrians, cylists and in India, cows. But so does everybody else. And if you just jump in front of a car to make it hit the brakes, it will be recording video of you, so smile.

New Vislab Car

I’ve written before about Vislab at the University of Parma. Vislab are champions of using computer vision to solve the driving problem, though their current vehicles also make use of LIDAR, and in fact they generally agree with the trade-offs I describe in my article contrasting LIDAR and cameras.

They have a new vehicle called DEEVA which features 20 cameras and 4 lasers. Like so many “not Google” projects, they have made a focus on embedding the sensors to make them not stand out from the vehicle. This continues to surprise me, because I have very high confidence that the first customers of robocars will be very keen that they not look like ordinary cars. They will want the car to stand out and tell everybody, “Hey, look, I have a robocar!” The shape of the Prius helped its sales, as well as its drag coefficient.

This is not to say there aren’t people who, when asked, will say they don’t want the car to look too strange, or who say, looking at various sensor-adorned cars, that these are clearly just lab efforts and not something coming soon to roads near you. But the real answer is neither ugly sensors nor hidden sensors, but distinctive sensors with a design flair.

More interesting is what they can do with all those cameras, and what performance levels they can reach.

I will also note that car uses QNX as its OS. QNX was created by friend I went to school with in Waterloo, and they’re now a unit of RIM/Blackberry (also created by classmates of mine.) Go UW!

Getting rid of lines at airport security

Why are there lines at airport security? I mean, we know why the lines form, when passenger load exceeds the capacity, with the bottleneck usually being the X-ray machines. The question is why this imbalance is allowed to happen?

The variable wait at airport security levies a high cost, because passengers must assume it will be long, just in case it is. That means every passenger gets there 15 or more minutes earlier than they would need to, even if there is no wait. Web sites listing wait times can help, but they can change quickly.

For these passengers, especially business passengers, their time is valuable, and almost surely a lot more costly than that of TSA screeners. If there are extra screeners, it costs more money to keep them idle when loads are low, but the passengers would be more than willing to pay that cost to get assuredly short airport lines.

(There are some alternatives, as Orwellian programs like Clear and TSA-PRE allow you to bypass the line if you will be fingerprinted and get a background check. But this should not be the answer.)

In some cases, the limit is the size of the screening area. After 9/11, screening got more intensive, and they needed more room for machines and more table space for people to prepare their bags for all the rules about shoes, laptops, liquids and anything in their pockets.

Here are some solutions:

Appointments at security

The TSA has considered this but it is not widely in use. Rather than a time of departure, what you care about is when you need to get to the airport. You want an appointment at security, so if you show up at that time, you get screened immediately and are on your way to the gate in time. Airlines or passengers could pay for appointments, though in theory they should be free and all should get them, with the premium passengers just paying for appointments that are closer to departure time.

Double-decker X-ray machines

There may not be enough floor space, but X-ray machines could be made double decker, with two conveyor belts. No hand luggage is allowed to be more than a foot high, though you need a little more headroom to arrange your things. Taller people could be asked to use the upper belt, though by lowering the lower belt a little you can get enough room for all and easy access to the upper belt for all but children and very short folks.

A double width deck is also possible, if people are able to reach over, or use the other side to load. (See below.)

This might be overkill, as I doubt the existing X-ray machines run at half their capacity. It is the screener’s deliberation that takes the time, and thus the next step is key…

Remote X-ray screeners

The X-ray screener’s job is to look at the X-ray image and flag suspect items. There is no need for them to be at the security station. There is no need for them to even be in the airport or the city, come to that. With redundant, reliable bandwidth, screeners could work in central screening stations, and be sent virtually to whatever security station has the highest load.

Each airport would have some local screeners, though they could work in a central facility so they can virtually move from station to station as needed, and even go there physically in the event of some major equipment failure. They would be enough to handle the airport’s base-load, but peak loads would call in screeners from other locations in the city, state or country.

Using truly remote screeners creates a risk that a network outage could greatly slow processing. This would mean delayed flights until text messages can go out to all passengers to expect longer lines and temporary workers can come in — or the outage can be repaired. To avoid this, you want reliable, redundant bandwidth, multiple screener centers and the ability to even use LTE cell phones as a backup. And, perhaps, an ability to quickly move screeners from airport to airport to handle downtimes at a particular airport. (Fortunately, there happens to be a handy technology for moving people from airport to airport!)

Screeners need not be working a specific line. Screeners could be allocated by item. Ie. one bag is looked at by screener 12 and the next bag is looked at by screener 24, just giving each item or set of items to the next available screener, which means an X-ray could actually constantly run at full speed if there are available staff. Each screener would, if they saw an issue, get to look at the other bags of the same passenger, and any bag flagged as suspect could immediately be presented to one or more other screeners for re-evaluation. In addition, as capacity is available, a random subset of bags could be looked at by 2 or more screeners.

It can also make sense to just skip having a human look at some bags at random to reduce wait and cost. It might even make sense to let some bags go unviewed in order to have other bags be viewed by 2 screeners. Software triage of how many screeners should look at a bag (0, 1, 2, etc.) is also possible though random might be better because attackers might figure out how to fool the software. With the screeners being remote and the belts operating at a fixed speed, passengers won’t learn who was randomly selected for inspection or not.

Some screeners need to be there — the one who swabs your bag, or does an extra search on it, the one who does the overly-intimate patdown and the one with the gun who tries to stop you if you try to run. But the ones who just give advice can be remote, and the one who inspects your boarding pass can be remote for passengers able to hold those things up to the scanners. I suspect remote inspection of ID is also possible though I can see people resisting that. The scanner who looks at your nude photo can certainly be remote — currently they are out of view so you don’t feel as bothered.

This remote approach, instead of costing more, might actually save money, especially on the national level. That’s because the different time zones have different peak times, and remote workers can quickly move to follow the traffic loads.

It’s also easier with remote screeners for passengers to use both sides of the belt to load and get their stuff. Agents would have to go in among them to pull bags for special inspection, though.

Of course it could be even better

Don’t misunderstand — the whole system should be scrapped and replaced with something that is more flyer-friendly as well as more capable of catching actual hijacker techniques. But if it’s going to exist, it should be possible to remove the line for everybody, not just those who go through background checks and fingerprinting just to travel.

After 2001, a company developed bomb proof luggage containers and now there is a new bag approach which would reduce the need to x-ray and delay checked luggage as much as they do. They were never widely deployed, because they cost more and weigh more.

I have 3 things I carry on planes:

  1. The things I need on the plane (like my computer, books and other items.)
  2. The vital and fragile things which I insist not leave my control, such as my camera gear and medicines.
  3. When I am not checking a bag, everything else for short trips.

I’m open to having all but #1 being put into a bomb-proof container by me and removed by me in a manner similar to gate check, so I can assure it’s always on the plane with me. Of course if I’m to do that then security (for just me and the items of type one) must be close to the plane — which it is for many international flights to the USA. That would speed up that security a lot. The use of remote screeners could make it easier to have security at the gate, too.

Personally, once the problem of taking over the cockpit was solved by new cockpit doors and access policies, I think there was an argument that you need not screen passengers at all. Sure, they could bring on guns, but would be no longer able to hijack the aircraft, so it’s no different from a bus or a train. Kept to small items, they would not be able to cause as much damage as they could do with a suitcase sized bomb in the security line. The security line is, by definition, unsecured, and anybody can bring a large uninspected roll-aboard up to it, amidst a very large crowd — similar to what happened in Moscow in 2011.

Instead, you would have gates where a portal in the wall would have a bomb-proof luggage container into which you could put your personal bags and coats. Most people would then just get on, but a random sampling would be directed to extra security. Those wishing to bring larger things on-board (medical gear, super-fragiles, mega-laptops) would need to arrive earlier and go through security too. A forklift would quickly move the bombproof container into the hold and the plane would take off.

Making sea crashes easier to find

We’ve all learned a lot about what can and can’t be done from the tragic story of MH 370, as well as the Air France flight lost over the Atlantic. Of course, nobody expected the real transponders to be disconnected or fail, and so it may be silly to speculate about how to avoid this situation when there already is supposed to be a system that stops aircraft from getting lost. Even so, here are some things to consider:

In the next few years, Iridium plans to launch a new generation of satellites with 1 megabit of bandwidth, replacing the pitiful 2400 bps they have now. In addition, with luck, Google Loon may get launched and do even more. With that much bandwidth, you can augment the “black box” with a live stream of the most important data. In particular, you would want a box to transmit as much as it could in the event of catastrophic shock, loss of signal from the aircraft and any unplanned descent, including of course getting close to the ground away from the target airport set at takeoff. Even the high cost of Iridium is no barrier for rare use, and you actually have a lot of seconds in the case of planes lost while flying at high altitude. Not enough to send much cockpit voice, but the ability to send all major alerts, odd-readings and cockpit inputs.

You could send more to geosync satellites but I will assume in a crisis it’s hard to keep aimed.

Another place you could stream live data would be to other aircraft. Turns out that up high as they are, aircraft are often able to transmit to other aircraft line of sight. Yes, the deep south Indian ocean may not be one of those places, but in general the range would be 500 miles, and longer if you used any wavelength that could travel beyond the horizon. Out there over the ocean, there’s nobody to interfere with, and closer to land, you can talk to the land. Near land, the live stream would go to terrestrial receivers, even cell towers. Live data gives you information even if the black box is destroyed or lost. If you are sure that can never happen, the black box is enough.

It also could make sense to have the black box be on the outside of the aircraft, meant to break away on impact with ground or water, and of course, it should float. The Emergency Locator Transmitter should be set up this way as well. You want another box pinging that sinks with the plane, though. The floating ELT/black box could even eject itself from the plane on its own if it detected an imminent crash in any remote area, including the ocean. With a GPS, it will know its altitude and location. It could even have a parachute on it.

Speaking of pinging, one issue right now is the boxes only have power for 2 weeks. Obviously there is a limit on power, and you want a strong signal, but it is possible to slow down your ping rate as your battery gets low, to the point that you are perhaps only pinging a few times a day. The trick is you would ping at very specific and predictable times, so people would know precisely when to listen — even years later if they get a new idea about where to look. Computers can go to sleep on these sorts of batteries and last for years if they only have to use power once a day.

If all you want to know is where an aircraft is, we’ve seen from this that it doesn’t take too much. A slightly more frequent accurately timed ping of any kind picked up by 2 satellites (LEO or geosync) is enough to get a pretty good idea where a plane is. The cheapest and simplest solution might be a radio that can’t be disabled that does this basic ping either all the time, or any time it doesn’t get the signal that others systems like ACARS are not doing their job.

Like many, I was surprised that the cell phones on board the aircraft that were left on — and every flight has many phones left on — didn’t help at all. Aircraft fly too high for most cell phones to actually associate with cell towers on the ground, so you would not see any connections made, but it seems likely that as the plane returned over inhabited areas on its way south, some of those phones probably transmitted something to those ground stations, something the ground stations ignored because they could not complete the handshake. If those stations kept lower level logs, there might be information there, but they probably don’t keep them. Because metal plane skins block signals, they might have been very weak. If the passengers were conscious, they probably would have been trying to hold their phones near the window, even though they could not connect at their altitude.

Another thing I have not understood is why we have only seen the results of one ping detected by the Inmarsat over the Indian. From that ping, they were able to calculate the distance of the aircraft to the satellite, and thus draw that giant arc we’ve all seen on the maps. It’s not clear to me why there was only one ping. Another ping would have drawn another arc, and so on, but that would have given us much more data to narrow down the course of the aircraft, as it’s a fair presumption it was flying straight. The reason they know know the one ping came from the southern hemisphere is the satellite itself is not perfectly centered and so moves up and down, giving a different doppler for north vs. south.

We may not learn their fate. I must admit, I’m probably an unusual passenger. I am an astronomer, and so will notice if a plane has made such a big course correction, though I have to admit in the southern hemisphere I would get confused. But then I would pull out my phone and ask its GPS where we are. I do this all the time, and I often notice when the aircraft I am in does something odd like divert or circle. But I guess there are not so many people of this stripe on a typical plane. (Though I have flown in and out of KL on Malaysian Airlines myself, but long ago.)

While hope for the people aboard is gone, I do hope we learn the cause of the tragedy, to see if anything we can think that is not too expensive would prevent it from happening again. The cost need not be that low. The cost of this search and the Air France search both added up to a lot.

Update: A New Idea — as soon as the search zone is identified, a search aircraft should drop small floating devices with small radio transmitters good to find them again at modest range. Drop them as densely as you can, which might mean every 10 miles or every 100 miles but try to get coverage on the area.

Then, if you find debris from the plane, do a radio hunt for the nearest such beacon. When you find it, or others, you can note their serial number, know where they were dropped, and thus get an idea of where the debris might have come from. Make them fancier, broadcasting their GPS location or remembering it for a dump when re-collected, and you could build a model of motion on the surface of the sea, and thus have a clue of how to track debris back to the crash site. In this case, it would have been a long time before the search zone was located, but in other cases it will be known sooner.

The world goes gaga for cool concept prototypes

One sign of how interest is building is the large reaction to some recent concept prototypes for robocars, two of which were shown in physical form at the Geneva auto show.

The most attention came to the Swiss auto research company Ringspeed’s XchangE concept which they based on a Tesla. They including a steering wheel which could move from side to side (and more to the point, go to the middle, where it could be out of the way of the two front seats,) along with seats that could recline to sleeping positions or for watching a big-screen TV, and which could reverse for face-to-face seating.

Also attracting attention was the Link and Go, an electric shuttle. In this article it is shown on the floor with the face to face configuration.

This followed on buzz late last year over the announcement of Zoox and their Boz concept, which features a car that has no steering wheel, and is symmetrical front to back (so of course seating is face to face.) The Zoox model takes this down to the low level, with 4 independent wheel motors. I’ve met a few times with Zoox’s leader, Tim Kentley-Klay of Melbourne, and the graphics skills of he and his team, along with some dynamic vision, also generated great buzz.

All this buzz came even though none of these companies had anything to say about the self-driving technology itself, which remains 99% of the problem. And there have been a number of designers who have put out graphic concepts like these for many years, and many writers (your unhumble blogger included) who have written about them for years.

The Zoox design is fairly radical — a vehicle with no windshield and no steering wheel — it can never be manually driven and a full robocar. Depending on future technologies like cheap carbon fibre and cost-effective 3-D printing for medium volumes, it’s a more expensive vehicle that you could make, but there may be a certain logic to that. Tesla has shown us that there are many people who will happily pay a lot more to get a car that is unlike any other, and clearly the best. They will pay more than can be rationally justified.

Speaking of Tesla, a lot of the excitement around the Rinspeed concept was that it was based on a Tesla. That appears to have been a wise choice for Rinspeed as people got more excited about it than any other concept I’ve seen. The image of people reclining, watching a movie, brought home an image that has been said many times in print but not shown physically to the world in the same way.

It’s easy for me (and perhaps for many readers of this blog) to feel that these concepts are so obvious that everybody just gets them, but it’s clearly not true. This revolution is going to take many people by surprise.

Commentary on California's robocar regulations workshop

Tuesday, the California DMV held a workshop on how they will write regulations for the operation of robocars in California. They already have done meetings on testing, but the real meat of things will be in the operation. It was in Sacramento, so I decided to just watch the video feed. (Sadly, remote participants got almost no opportunity to provide feedback to the workshop, so it looks like it’s 5 hours of driving if you want to really be heard, at least in this context.)

The event was led by Brian Soublet, assistant chief counsel, and next to him was Bernard Soriano, the deputy director. I think Mr. Soublet did a very good job of understanding many of the issues and leading the discussion. I am also impressed at the efforts Mr. Soriano has made to engage the online community to participate. Because Sacramento is a trek for most interested parties, it means the room will be dominated by those paid to go, and online engagement is a good way to broaden the input received.

As I wrote in my article on advice to governments I believe the best course is to have a light hand today while the technology is still in flux. While it isn’t easy to write regulations, it’s harder to undo them. There are many problems to be solved, but we really should see first whether the engineers who are working day-in and day-out to solve them can do that job before asking policymakers to force a solution. It’s not the role of the government to forbid theoretical risks in advance, but rather to correct demonstrated harms and demonstrated unacceptable risks once it’s clear they can’t be solved on the ground.

With that in mind, here’s some commentary on matters that came up during the session.

How do the police pull over a car?

Well, the law already requires that vehicles pull over when told to by police, as well as pull to the right when any emergency vehicle is passing. With no further action, all car developers will work out ways to notice this — microphones which know the sound of the sirens, cameras which can see the flashing lights.

Developers might ask for a way to make this problem easier. Perhaps a special sound the police car could make (by holding a smartphone up to their PA microphone for example.) Perhaps the police just reading the licence plate to dispatch and dispatch using an interface provided by the car vendor. Perhaps a radio protocol that can be loaded into an officer’s phone. Or something else — this is not yet the time to solve it.

It should be noted that this should be an extremely unlikely event. The officer is not going to pull over the car to have a chat. Rather, they would only want the car to stop because it is driving in an unsafe manner and putting people at risk. This is not impossible, but teams will work so hard on testing their cars that the probability that a police officer would be the first to discover a bug which makes the car drive illegally is very, very low. In fact, not to diminish the police or represent the developers as perfect, but the odds are much greater that the officer is in error. Still, the ability should be there.  read more »

A Critique of the NHTSA "Levels" for robocars

Last year, the NHTSA released a document defining “levels” from 0 to 4 for self-driving technology. People are eager for taxonomy that lets them talk about the technology, so it’s no surprise that use of the levels has caught on.

The problem is that they are misleading and probably won’t match the actual progress of technology. That would be tolerable if it weren’t for the fact that NHTSA itself made recommendations to states about how the levels should be treated in law, and states and others are already using the vocabulary in discussing regulations. Most disturbingly, NHTSA recommendations suggested states hold off on “level 4” in writing regulations for robocars — effectively banning them until the long process of un-banning them can be done. There is a great danger the levels will turn into an official roadmap.

Because of this, it’s worth understanding how the levels are already incorrect in the light of current and soon-to-be-released technology, and how they’re likely to be a bad roadmap for the future.

Read A Critique of the NHTSA and SAE “Levels” for robocars.

Would we ever ban human driving?

I often see the suggestion that as Robocars get better, eventually humans will be forbidden from driving, or strongly discouraged through taxes or high insurance charges. Many people think that might happen fairly soon.

It’s easy to see why, as human drivers kill 1.2 million people around the world every year, and injure many millions more. If we get a technology that does much better, would we not want to forbid the crazy risk of driving? It is one of the most dangerous things we commonly do, perhaps only second to smoking.

Even if this is going to happen, it won’t happen soon. While my own personal prediction is that robocars will gain market share very quickly — more like the iPhone than like traditional automotive technologies — there will still be lots of old-style cars around for many decades to come, and lots of old-style people. History shows we’re very reluctant to forbid old technologies. Instead we grandfather in the old technologies. You can still drive the cars of long ago, if you have one, even though they are horribly unsafe death traps by today’s standards, and gross polluters as well. Society is comfortable that as market forces cause the numbers of old vehicles to dwindle, this is sufficient to attain the social goals.

There are occasional exceptions, though usually only if they are easy to do. You do have to install seatbelts in a classic car that doesn’t have them, as well as turn signals and the other trappings of being street legal.

While I often talk about the horrible death toll, and how bad human drivers are, the reality is that this is an aggregation over a lot of people. A very large number of people will never have an accident in their lives, let alone one with major injuries or death. That’s a good thing! The average person probably drives around 600,000 miles in a lifetime in the USA. There is an accident for every 250,000 miles, but these are not evenly distributed. Some people have 4 or 5 accidents, and many have none.

As such, forbidding driving would be a presumption of guilt where most are innocent, and tough call from a political standpoint.

That doesn’t mean other factors won’t strongly discourage driving. You’ll still need a licence after all, and that licence might get harder and harder to get. The USA is one of the most lax places in the world. Many other countries have much more stringent driving tests. The ready availability of robotaxis will mean that many people just never go through the hassle of getting a licence, seeing no great need. Old people, who currently fight efforts to take away their licences, will not have the need to fight so hard.

Insurance goes down, not up

You will also need insurance. Today we pay about 6 cents/mile on average for insurance. Those riding in safe robocars might find that cost down to a penny/mile, which would be a huge win. But the cost for those who insist to drive is not going to go up because of robocars, unless you believe the highly unlikely proposition that the dwindling number of humans will cause more or deadlier accidents per person in the future. People tolerate that 6 cent/mile cost today, and they’ll tolerate it in the future if they want to. The cost will probably even drop a bit, because human driven cars will have robocar technologies and better passive safety (crumple zones) that make them much safer, even with a human at the wheel. Indeed, we may see many cars which are human driven but “very hard” to crash by mistake.

The relative cost of insurance will be higher, which may dissuade some folks. If you are told, “This trip will cost $6 if you ride, and $8 if you insist on driving” you might decide not to drive because 33% more cost seems ridiculous — even though today you are paying more for that cost on an absolute scale.

Highly congested cities will take steps against car ownership, and possibly driving. In Singapore, for example, you can’t have a car unless you buy a very expensive certificate at auction — these certificates cost as much as $100,000 for ten years. You have to really want a private car in Singapore, but still many people do.

Governments won’t have a great incentive to forbid driving but they might see it as a way to reduce congestion. Once robocars are packing themselves more tightly on the roads, they will want to give the human driven cars a wider berth, because they are less predictable. As such, the human driver takes up more road space. They also do more irrational things (like slow down to look at an accident.) One can imagine charges placed on human drivers for the extra road congestion they cause, and that might take people out of the driver’s seat.

The all-robocar lane tricks

There are certain functions which only work or only work well if all cars are robocars. They will be attractive, to be sure, but will they surpass the pressure from the human lobby?

  • It’s possible to build dynamic intersections without traffic lights or bridges if all cars are trusted robocars.
  • It’s possible to build low-use roads that are just two strips of concrete (like rails) if only robocars go on them, which is much cheaper.
  • It’s possible to safety redirect individual lanes on roads, without need for barriers, if all cars in the boundary lanes are robocars. Humans can still drive in the non-boundary lanes pretty safely.
  • We can probably cut congestion a lot in the all-robocar world, but we still cut it plenty as penetration increases over time.

These are nice, but really only a few really good things depend on the all-robocar world. Which is a good thing, because we would never get the cars if the benefits required universal adoption.

But don’t have an accident…

All of this is for ordinary drivers who are free of accidents and tickets. This might all change if you have an accident or get lots of tickets. Just as you can lose you licence to a DUI, I can foresee a system where people lose their licence on their first accident, or certainly on their second. Or their first DUI or certain major tickets. In that world, people will actually drive with much more caution, having their licence at stake for any serious mistake. A teen who causes an accident may find they have to wait several years to re-try getting a licence. It’s also possible that governments would raise the driving age to 18 or 21 to get people past the reckless part of their lives, but that this would not be a burden in a robocar world, with teens who are not even really aware of what they are missing.

I’ve driven over 35 years and had no accidents. I’ve gotten 2 minor speeding tickets, back in the 80s — though I actually speed quite commonly, like everybody else. It seems unlikely there would be cause to forbid me to drive, even in a mostly robocar world. Should I wish it. I don’t actually wish it, not on city streets. I still will enjoy driving on certain roads I would consider “fun to drive” in the mountains or by the coast. It’s also fun to go to a track and go beyond even today’s street rules. I don’t see that going away.

What governments should do to help and regulate robocars

In my recent travels, I have often been asked what various government entities can and should do related to the regulation of robocars. Some of them want to consider how to protect public safety. Most of them, however, want to know what they can do to prepare their region for the arrival of these cars, and ideally to become one of the leading centres in the development of the vehicles. The car industry is about to be disrupted, and most of the old players may not make it through to the new world. The ground transportation industry is so huge (I estimate around $7 trillion globally) that many regions depend on it as a large component of their economy. For some places it’s vital.

But there are many more questions than that, so I’ve prepared an essay covering a wide variety of ways in which policymakers and robocars will interact.

Read: Governments, The Law and Robocars

US push to mandate V2V radios -- is it a good choice?

It was revealed earlier this month that NHTSA wishes to mandate vehicle to vehicle radios in all cars. I have written extensively on the issues around this and regular readers will know I am a skeptic of this plan. This is not to say that I don’t think that V2V would not be useful for robocars and regular cars. Rather, I believe that its benefits are marginal when it comes to the real problems, and for the amount of money that must be spent, there are better ways to spend it. In addition, I think that similar technology can and will evolve organically, without a government mandate, or with a very minimal one. Indeed, I think that technology produced without a mandate or pre-set standards will actually be superior, cheaper and be deployed far more quickly than the proposed approach.

The new radio protocol, known as DSRC, is a point-to-point wifi style radio protocol for cars and roadside equipment. There are many applications. Some are “V2V” which means cars report what they are doing to other cars. This includes reporting one’s position tracklog and speed, as well as events like hitting the brakes or flashing a turn signal. Cars can use this to track where other cars are, and warn of potential collisions, even with cars you can’t see directly. Infrastructure can use it to measure traffic.

The second class of applications are “V2I” which means a car talks to the road. This can be used to know traffic light states and timings, get warnings of construction zones and hazards, implement tolling and congestion charging, and measure traffic.

This will be accomplished by installing a V2V module in every new car which includes the radio, a connection to car information and GPS data. This needs to be tamper-proof, sealed equipment and must have digital certificates to prove to other cars it is authentic and generated only by authorized equipment.

Robocars will of course use it. Any extra data is good, and the cost of integrating this into a robocar is comparatively small. The questions revolve around its use in ordinary cars. Robocars, however, can never rely on it. They must be be fully safe enough based on just their sensors, since you can’t expect every car, child or deer to have a transponder, ever.

One issue of concern is the timeline for this technology, which will look something like this:

  1. If they’re lucky, NHTSA will get this mandate in 2015, and stop the FCC from reclaiming the currently allocated spectrum.
  2. Car designers will start designing the tech into new models, however they will not ship until the 2019 or 2020 model years.
  3. By 2022, the 2015 designed technology will be seriously obsolete, and new standards will be written, which will ship in 2027.
  4. New cars will come equipped with the technology. About 12 million new cars are sold per year.
  5. By 2030, about half of all cars have the technology, and so it works in 25% of accidents. 3/4 of those will have the obsolete 2015 technology or need a field-upgrade. The rest will have soon to be obsolete 2022 technology. Most cars also have forward collision warning by this point, so V2V is only providing extra information in a tiny fraction of the 25% of accidents.
  6. By 2040 almost all cars have the technology, though most will have older versions. Still, 5-10% of cars do not have the technology unless a mandate demands retrofit. Some cars have the equipment but it is broken.

Because of the quadratic network effect, in 2030 when half of cars have the technology, only 25% of car interactions will be make use of it, since both cars must have it. (The number is, to be fair, somewhat higher as new cars drive more than old cars.)  read more »

Virtual window in cruise ship comes to life

Very long-time readers of this blog will remember a proposal I made 10 years ago that cruise ship inside cabins use HDTVs with the outside view. Now a cruise ship is launching with such a system, though bigger than I proposed.

The Royal Caribbean vessel will feature an artificial balcony using an 80 inch screen including a fake railing. While the cameras used are 4K, I suspect the screens will only be HDTV, since 4K 80 inch screens are hugely expensive right now, though very shortly they will be quite affordable for this.

It will be interesting to see if the virtual balcony approach does much better than just using something meant to look like a window, which frankly would be a bunch easier though not get that 3D effect from the railing. (The fact that the image and railing are at the same focus distance may actually complicate things.) I think an interesting approach would be instead to use a screen with infinity optics, which make the screen focus as though it is at infinity. This requires space outside the room, which you could get by having two adjoining cabins each take a box out of the other cabin for the mirror and lenses. (Though doing really good collimated light takes a lot of space which is at too much of a premium in a cruise ship, though perhaps not as much in interior cabins.

The sample photo shows a rather large stateroom — usually interior rooms are small and for those who can’t afford a window, but this might change. One reason people tolerate interior rooms is they plan to spend very little time in the room not sleeping, but the reality is that even doing that, it is disconcerting not to have the subtle cues of real exposure to day and night, waking up and not knowing what time it is. It generates a greater feeling of being closed in to be in a small enclosed and windowless space, compared to large interior spaces. As I pointed out before, having a view of the real horizon helps a lot with seasickness.

If this is a success, it could lead to several things:

  • Ability to sell many more interior rooms, making better use of space in the middle of the very wide ships desired today.
  • Low, central cabins have the least sway, but in the past were not popular with the seasick because that’s much worse without a window.
  • People might actually choose a larger, interior cabin at the same price as a much smaller, exterior cabin. Even if you plan to spend only modest time awake in your cabin, life in a larger cabin is more pleasant.
  • Virtual walls could be put on multiple sides of the cabin, so you get the illusion of an owner’s suite, with views in all directions.

To really get a super effect, you could even have people wear 3D glasses in the cabin — polarized ones that double as sunglasses if you can make the screens bright enough. These allow you to do a special trick if there is only one person in the room, which make the screens simulate parallax, so that as you move your head, the background moves as though you are really looking through a window. Most ocean scenes are not very 3D themselves. It is debatable if this would be good enough for people to find it worth wearing the glasses, and of course there is the issue of dealing with only one person in the room. You can handle 2 people in the room if you have shutter glasses, very bright screens, and 240hz or faster displays. Handling 2 is probably enough — turn the effect off the very rare times you have guests.

Finally, I would even wonder if it made sense to pipe in outside air on demand.

4K displays can get close to eye resolution depending on the viewing distance. Interior cabins on cruise ships are dismal places, and so if this can make them more palatable, it can be financially worthwhile.

Disney has also been doing this since 2010, I have learned, with a virtual porthole. They also add animations to the video (of Disney Characters peeking in the window) which presumably the kids like. Reports are this has caused a major boost in their inside cabin sales.

Michigan to build fake-downtown robocar test site

I’m working on a new long article about advice to governments on how they should react to and encourage the development of robocars.

An interesting plan announced today has something I had not thought of: Michigan is funding the development of a fake downtown to act as a test track for robocar development. The 32 acre site will be at the University of Michigan, and is expected to open soon — in time for the September ITS World Congress.

Part of the problem with my advice to governments is that my main recommendation is to get out of the way. To not try too hard both to help and to regulate, because even those of us trying to build the vehicles don’t have a certain handle on the eventual form of the technology.

A test track is a great idea, though. Test tracks are hugely expensive to make, entirely outside of the means of small entrepreneurs. They immediately resolve most safety concerns for people just starting out — every team has had small runaway issues at the very start. Once past that, they can be shared, in fact having multiple vehicles running the track can be a bonus rather than a problem.

Big car companies all have their own test tracks, but these are mostly real tracks, not urban streets. Several companies have built pre-programmed robotic cars which drive in specific patterns to test ADAS systems and robocars. The DARPA Urban Challenge was run on an fake set of urban streets on an old military base, so this idea goes back to the dawn of the modern field. (Old military bases are popular for this — Mythbusters used a California one for their test of blind and drunk driving.)

This track will probably bring teams to Michigan, which is what they want. Detroit is in trouble, and it knows it. Robocars are going to upend the car industry. Incumbent players are going to fall, and new players are going to rise, and that could be very bad news for Detroit.

My home province of Ontario is facing the same problem, to a lesser degree. A lot of the Ontario economy is in cars as well, and so they’ve started a plan to introduce testing legislation. I don’t think this is the right plan — testing is already legal with a good supervising driver in most jurisdictions, though I have not yet examined the Ontario code. Ontario has one big advantage over Michigan, though, in that it is also a high-tech centre. Right now the car companies in Detroit are finding it very difficult to convince high-tech stars to come move to Detroit, in spite of being able to offer high pay and the fact that you can literally get a mansion for the price of the downpayment on a nice San Francisco condo. Toronto doesn’t have the same problem — in fact it’s one of the most desired places to live for Canadians, and for people from all over the world. Ontario’s combination of high-tech and big automotive might end up doing well.

At least in Ontario, everybody will be motivated to solve the snow problem sooner than the California companies are.

The Valley of Danger -- medium speed roads for robocars

With last week’s commercial release of the Navia, I thought I would release a new essay on the challenges of driving robocars at different speeds.

As the Navia shows, you can be safe if you’re slow. And several car company “traffic jam assist” products say the same thing. On the other end, we see demos taking place at highway speeds. But what about the middle range — decent speeds on urban streets?

Turns out that’s one of the harder problems, and so there is a “valley” in the chart which makes safe operation harder in that zone.

So read my more detailed essay on these challenges: The Valley of Danger for Robocars

Induct's "Navia" officially for sale for $250,000

A significant milestone was announced this week. Induct has moved their “Navia” vehicle into commercial production, and is now taking orders, though at $250,000 you may not grab your wallet.

This is the first commercial robocar. Their page of videos will let you see it in operation in European pedestrian zones. It operates unmanned, can be summoned and picks up passengers. It is limited to a route and stops programmed into it.

The “catch” is that it stays safe by going only 20km/h, where it is much harder for it to harm things. It’s aimed at the campus shuttle market, rather than going on public roads, but it drives on ordinary pavement, not requiring special infrastructure, since it localizes using a prepared laser map of the route.

Now 20km/h (12mph) is not very fast, though suitable for a campus shuttle. This slow speed and limited territory may make some skeptical that this is an important development, but it is.

  1. This is a real product, ready to deploy with civilians, without its own dedicated track or modified infrastructure.
  2. The price point is actually quite justifiable to people who operate shuttles today, as a shuttle with human driver can cost this much in 1.5 years or less of operation.
  3. It smashes the concept of the NHTSA and SAE “Levels” which have unmanned operation as the ultimate level after a series of steps. The Navia is at the final level already, just over a constrained area and at low speed. If people imagined the levels were a roadmap of predicted progress, that was incorrect.
  4. Real deployment is teaching us important things. For example, Navia found that once in operation, teen-agers would deliberately throw themselves in front of the vehicle to test it. Pretty stupid, but a reminder of what can happen.

The low speed does make it much easier to make the vehicle safe. But now it become much easier to show that over time, the safe speed can rise as the technology gets better and better. (To a limit — see my article on the dangers at different speeds.)

The route limitation has two elements. The first is that they want to keep it only in safe locations, which makes sense for an early release. It also avoids legal issues. The second is simpler — they are using a map based approach, so they can only drive somewhere that has been mapped. Mapping means driving a scanner over the route and building a map of all the details, and then typically having humans confirm the map. This is the same way that the cars from Google and almost all other vendors do it when they are doing complex things that go beyond following lane markers on a highway. As such it is not that big a barrier. While building new infrastructure is hugely expensive, mapping it is much more modest in comparison, though non-trivial. Covering the whole world would take time, but it becomes possible to quickly add routes and destinations.

I single out the Navia because of its ability to drive without requiring any changes to the roads or extra infrastructure. Previous shuttle-style systems like the ULTra PRT at Heathow (which I rode a couple of months ago), the Masdar PRT and earlier Cybercar projects all required a dedicated guideway or fenced-off ground track to run. While the Navia is being kept to private property for safety and legal reasons, there is no technical reason it could not operate in public spaces, which moves it from PRT into Robocar territory.

The Navia is very much designed to be a shuttle. It is open-air and doesn’t really have seats, just padded bars to lean against. There is no steering wheel or other traditional control. This belies that common expectation of the first vehicles looking just like traditional cars.

Félicitations, Induct.

CES Robocar News

CES has become a big show for announcing car technology. I’m not there this year due to other engagements, but here’s some of what has been in the news.

Most impressive is probably BMW’s prototype 2 and 6 series vehicles, which have features both for existing drivers and for future self-operation. The video below shows a BMW 235i doing a slalom around cones on its own, and then drifting on wet pavement. BMW claims their active assist will help you in both understeer and oversteer situations. That feature wil be in trials in 2015. Here’s an older article on BMW efforts.

Earlier I wrote about Ford’s plan for the C-Max which positions its solar panel under a concentrator which remains more a concept gimmick but is still interesting.

There’s been a raft of “connected car” announcements, by which we mean cars using the mobile network to provide apps and related features. The biggest news is a new consortium planning to use Android as a platform for connected infotainment in cars, called the Open Automotive Alliance. It has GM, Audi, Honda, and Hyundai involved, and of course Google. It may be bad news for QNX, which for now is the remaining shining star in RIM/Blackberry’s portfolio, as QNX has a strong position as the infotainment OS in a number of cars. (Having gone to school at UW long ago, I am friends with all the founders of these companies.)

The win will be cars that don’t try to be too smart, and let the phones do most of the work. My phone is just a few months old, while my car is ten years old, and this ratio is not that uncommon. Put the smarts where the innovation is moving fastest, because even if you don’t, they wild end up there eventually by consumer demand.

Audi is demonstrating their A7 with new self-drive features at CES. It even has Nevada plate number 046 for Autonomous vehicle testing — people are wondering who all these plates have gone to. Google only took a few, Continental took some, and Audi took some around 007. While nobody does primary testing in Nevada, everybody doing test demos at CES needs these plates.

Bosch is running a full “driverless car experience” in their booth and some panels during the show. The panel is happening in just 15 minutes as I write this.

Delphi is also doing a demo of all their driver assist tech. This is mostly aimed at driver monitoring, which is seen as important for the transition to full robocar operation where lots of driver intervention is required.

Induct is showing off the Navia in a track — I write more details about how it is now for sale. Though it’s not quite “consumer” electronics.

Syndicate content