Topic

Audi TT to Pikes Peak, Masdar PRT goes into action

Two bits of robocar news from last week. I had been following the progress of the Stanford/VW team that was building a robotic Audi TT to race to the top of Pikes Peak. They accomplished their run in September, but only now made the public announcement of it. You can find photos and videos with the press release or watch a video on youtube.

This project began with the team teaching the vehicle to “drift” — make controlled turns while wheels are skidding, something needed on the windy curves and dirt/gravel/pavement mix on the way up to Pikes Peak. Initial impressions were that they had the goal of being a competitor in the famous Pikes Peak Hill Climb — a time trial race to the top by human drivers, the fastest of whom have climbed in in 10 minutes, 3 seconds in major muscle cars. The best standard cars have done it in about 11.5 minutes, and Audi says a stock TT would take a bit under 17 minutes.

The autonomous Audi’s time of 27 minutes, with a top speed of 45mph, is thus a bit disappointing for those who were hoping for some real man vs. machine competition. The team leader, Burkhard Huhnke, downplayed this, saying that the goal was to come to a better understanding of computer controlled cornering and skidding, in order to make better driver assist systems for production vehicles. Indeed, that is a good goal and it is expected that robocar technologies will first appear as driver assist and safety features in production cars.

The actual run was also marred by tragedy when the helicopter filming it crashed.

Earlier, I spoke with James Gosling — more famous as the creator of the Java language — about his role in the project. Gosling knows languages and compilers very well, and he helped the team develop a compiler so the interpreted scripts they were writing in languages like Matlab. Gosling’s compiler was able to run the resulting code around 100x faster than the interpreter, allowing them to do a lot more with less hardware.

There is strong interest in man vs. machine robocar contests. Such contests, aside from setting a great bar for the robots, will demonstrate their abilities to the public and generate strong public interest. This turned out not to be such a contest, but someday a robot will race to the top of Pikes Peak in better than 10 minutes. It will have a bigger engine, and many more sensors than the Audi in this run, which mostly relied on augmented GPS (extra transmitters were put by the roadside for full accuracy.)

A future car will have a complete map in its head of where all road surfaces are, and their characteristics. It will know the physics of the car and the road better than any human driver. The main thing humans will be able to do is use their eyes to judge changing road conditions, but they don’t change very much, and computer vision or sensor systems to make such judgments don’t seem like an impossible project.

Masdar PRT in operation

In other news, the greatly-shrunk Masdar PRT system, built by 2getthere Inc. of the Netherlands, has entered production operation in Masdar, an experimental city project just outside Abu Dhabi. The project only has 2 stops for passengers (and 3 more for cargo) at this point. It runs at ground level, and pedestrians use an artificial level one floor up.

These pods have many robocar features. They use rubber tires and run on open, unmarked pavement, guiding themselves via odometry and sensing magnets embedded every 5 feet or so in the pavement. They also have laser sensors which see obstructions on the roadway and any pedestrians. They will stop for pedestrians, and even follow you if you walk ahead, maintaining a fixed distance. The system is not designed to mix with pedestrians, however, and the control software shuts down the relevant section of the track if passengers exit their vehicle outside a station.

The tracking is accurate enough that, as you can see, the tires have left black trails on the pavement by constantly running in the same place.

Photos and video can currently be found at the PRT Consulting site and this video shows it pulling out of a station. There is only one other video — I hope more will arrive soon.

The economy has scaled Masdar’s plans back greatly. The original plan called for a whole city done one floor up with a network of these proto-robocar PRT pods running underneath, and no traditional cars in the whole city.

Nissan Leaf EPA rating of "99mpg" is, sadly, a lie.

Nissan is touting that the EPA gave the new Leaf a mileage rating of 99mpg “gasoline equivalent”. What is not said in some stories (though Nissan admits it in the press release) is that this is based on the EPA rating a gallon of gasoline as equivalent to 33.7 kwh, and the EPA judging that the car only goes 73 miles on its 24kwh battery.

There is a huge problem with these numbers. If it were possible to convert perfectly, a gallon of gasoline actually has about 36kwh, so possibly the EPA is factoring in the 7% loss of electrical distribution. But in reality it isn’t even remotely possible to convert fuel to electricity perfectly.

I have written and update on comparing gasoline and electricity with more details.

The Department of Energy, for example, offers a number which puts under 13kwh as the energy equivalent of a gallon of gasoline. That’s how many kwh you get out of the plug if you burn coal, gas or oil with roughly the same energy as that gallon of gas. With the DoE’s number, the Leaf is getting a combined mileage of around 36 mpg-equivalent. That’s not a bad number, but there are many gasoline cars that do better than that. Even a Lexus hybrid does similar to that. This is no minor error, it’s a massive one, and it’s highly unlikely that Nissan or the EPA are unaware of it. This gives the impression of an attempt to make the Leaf seem way, way better than it is to promote electric cars. The problem with that is that when people learn the truth, they are going to be unhappy, and will be soured on electric cars, Nissan and the EPA.

Now I will agree that there is justifiable debate over the right way to do this calculation. The DoE works from its calculation of the average efficiency of power plants in the USA. People in areas with more efficient power will do better using electricity than those close to old coal plants (which are the big drag-down here.) The DoE also counts BTUs in nuclear plants (which provide about 20% of U.S. energy) as BTUs even though no fossil fuel is burned and no greenhouse gas is emitted. People must judge for themselves how “dirty” they think nuclear BTUs are, and how to value an electric car in areas where most of the electricity is nuclear. Even harder to judge are the 10% of US kwh that come from hydro. Hydro doesn’t even have BTUs or pollution, though it does come with environmental destruction. If you live in the Pacific Northwest or parts of Canada where most of the power is from hydro, you may judge the 99mpg number as more realistic, though in this case the concept of a gasoline equivalent is stretched pretty thin.

If you live in California, which burns almost no coal and gets most of its power from natural gas, and then nuclear, the real number isn’t as bad as the national average, but it’s still nowhere close to 99mpg. If you live in a place that is almost all-coal, like Utah or New Mexico, electric cars are not so great an idea — their only environmental advantage is that the fuel source is domestic rather than imported, and the coal is burned elsewhere, not right next to you.

There are other electric cars that are more efficient than the Leaf, but the big reality is that to really beat out the 50mph gasoline hybrids you need to make your car lighter.

“But wait,” some people say. We can run our electric car on solar or renewables and all is wonderful! Don’t get me started on this. There are no solar electrons. Installing renewable generation can be a good idea, but you must tie it to the grid for it to work. Not tying solar or wind or other sources to the grid is highly wasteful, because the power is discarded any time the battery is not empty (or worse, not connected.) Grid tie makes the grid greener, and people who do that can feel good about it if they do it well, but it does’t make driving more than a tiny smidgen of a percent greener than it was.

Shame on Nissan and the EPA. I hope that at least, Nissan will only sell the car in places with electricity that is well above average in quality, and refuse to sell it in places where the power is mostly from coal.

Not that I don’t understand the motivation. Had the EPA rated the car with the DoE methodology number of 36mpg, it might well have killed the car at the starting gate. It’s an interesting moral question if it’s right to lie to kickstart a technology which will become better with time. They could also have lobbied for a more reasonable but generous mpg, perhaps derived from the best natural gas plants, which would have offered a number in the 50s. Not nearly as exciting but not a car-killer, though the comparison to the Prius or Insight would not look so good.

It would have been best if they had just developed a new standard, like watt-hours/mile or miles/kwh, and leave it to the press and local power utilities to publish local conversions between “kwh” and gallons. (Not the dealers, they can’t be trusted of course.) It actually would be quite handy if every power utility were to publish, for each zone the local efficiency of the power grid in terms of BTU/kwh or greenhouse effect/kwh.

Update on Chevy Volt: The numbers for the Volt were released. As a plug-in Hybrid that can go 35 miles on its batteries and then has a gasoline engine, they rated it as 97mpg while on the battery (similar false number to the Leaf) and 37mpg while on gasoline. These numbers are actually roughly the same when using electricity at the grid national average.

Sad to say, but if you live in a place where the power comes from coal, the math seems to say you should remove most of the batteries and save the weight.

Needed: An international hand signal for "There's a problem with your car"

You’re driving down the road. You see another car on the road with you that has a problem. The lights are off and it’s dusk. There is something loose that may break off. There’s something left on the roof or the trunk is not closed — any number of things. How do you tell the driver that they need to stop and check? I’ve tried sometimes and they mostly think you are some sort of crazy, driving to close to them, waving at them, honking or shouting. Perhaps after a few people do it they figure it out.

We have a few signals. Oncoming cars flash lights on and off to warn you your lights are off. (Sometimes they are also warning of a speed trap.) High beams means, “I want to pass and you’re impeding the lane” and while many think that’s rude it’s better than tailgating.

We need a signal for “There is a problem with your car, you should check it out.” This signal should be taught in driving schools, and even be on the driving test. A publicity campaign should educate existing drivers.

One proposal that might make sense is the SCUBA signal for “I have a problem.” This is holding your hand flat, palm down, and wiggling it side to side (ie. rotating your wrist.) Then you point to the source of the problem, like your regulator or whatever. (There are specific SCUBA signals for well known problems, like being low on air, nitrogen narcosis etc.)

For this signal you would waggle the hand and then point at the place on the other person’s car. To those untrained, the signal often mean’s “dicey” or uncertain. Shaking of the head could also strengthen the signal.

Anybody have a better signal to propose?

Robocars vs. Deer and the flying bumper

Today, I was challenged with the question of how well robocars would deal with deer crossing the road. There are 1.5 million collisions with deer in the USA every year, resulting in 200 deaths of people and of course many more deer. Many of the human injuries and crashes have come from trying to swerve to avoid the deer, and skidding instead during the panic.

At present there is no general purpose computer vision system that can just arbitrarily identify things — which is to say you can’t show it a camera view of anything and ask, “what is that?” CV is much better at looking for specific things, and a CV system that can determine if something is a deer is probably something we’re close to being able to make. However, I made a list of a number of the techniques that robots might have to do a better job of avoiding collisions with animals, and started investigating thoughts on one more, the “flying bumper” which I will detail below.

Spotting and avoiding the deer

  • There are great techniques for spotting animal eyes using infrared light bouncing off the retinas. If you’ve seen a cheap flash photo with the “red eye” effect you know about this. An IR camera with a flash of IR light turns out to be great at spotting eyes and figureing out if they are looking at you, especially in darkness.
  • A large number of deer collisions do take place at dusk or at night, both because deer move at these times and humans see badly during them. LIDAR works superbly in darkness, and can see 100m or more. On dry pavement, a car can come to a full stop from 80mph in 100m, if it reacts instantly. The robocar won’t identify a deer on the road instantly but it will do so quickly, and can thus brake to be quite slow by the time it travels 100m.
  • Google’s full-map technique means the robocar will already have a complete LIDAR map of the road and terrain — every fencepost, every bush, every tree — and of course, the road. If there’s something big in the LIDAR scan at the side of the road that was not there before, the robocar will know it. If it’s moving and more detailed analysis with a zoom camera is done, the mystery object at the side of the road can be identified quickly. (Radar will also be able to tell if it’s a parked or disabled vehicle.)
  • They are expensive today, but in time deep infrared cameras which show temperature will become cheap and appear in robocars. Useful for spotting pedestrians and tailpipes, they will also do a superb job on animals, even animals hiding behind bushes, particularly in the dark and cool times of deer mating season.
  • Having spotted the deer, the robocar will never panic, the way humans often do.
  • The robocar will know its physics well, and unlike the human, can probably plot a safe course around the deer that has no risk of skidding. If the ground is slick with leaves or rain, it will already have been going more slowly. The robocar can have a perfect understanding of the timings involved with swerving into the oncoming traffic lane if it is clear. The car can calculate the right speed (possibly even speeding up) where there will be room to safely swerve.
  • If the oncoming traffic lane is not clear, but the oncoming car is also a robocar, it can talk to that car both to warn it and to make sure both cars have safe room to swerve into the oncoming lane.
  • Areas with major deer problems put up laser sensors along the sides of the road, which detect if an animal crosses the beam and flash lights. A robocar could get data from such sensors to get more advanced warning of animal risks areas.

Getting the deer to move

There might be some options to get the deer to get out of the way. Deer sometimes freeze, a “deer in the headlights.” A robocar, however, does not need to have visible headlights! It may have them on for the comfort of the passengers who want to see where they are going and would find it spooky driving in the dark guided by invisible laser light, but those comfort lights can be turned off or dimmed during the deer encounter, something a human driver can’t do. This might help the deer to move.  read more »

Robocar impact on traffic congestion and capacity

Many people wonder whether robocars will just suffer the curse of regular cars, namely traffic congestion. They are concerned that while robocars might solve many problems of the automobile, in many cities there just isn’t room for more roads. Can robocars address the problems of congestion and capacity? What about combined with ITS (Intelligent Transportation Systems) efforts to make roads smarter for human driven cars?

I think the answer is quite positive, for a number of different reasons. I have added a new Robocar essay:

Traffic Congestion and Capacity with Robocars

In short, a wide variety of factors (promotion of small, single passenger cars, ability to reverse streets during rush-hour, elimination of accidents and irrational congestion-fostering behaviour, shorter headways, metering of road usage and load balancing of roads and several others) could amount to a severalfold increase in the capacity of our roads, with minimal congestion. If you add the ability to do convoys, the increase can be 5 to 10 fold. (About 20-fold in theory.) The use of on-demand pooling into buses over congested sections allows a theoretical (though unlikely) 100-fold increase in highway capacity.

While these theoretical limits are unlikely, the important lesson is that once most of the cars on the roads are robotic, we have more than enough road capacity to handle our current needs and needs well into the future. In general, overcapacity causes building, so in time we’ll start to use it up — and have much larger cities, if we wish them — but unlike today’s roads which add capacity until they collapse from congestion, advanced metering can assure that no road accepts more vehicles than it can handle without major risk of congestion collapse.

Even before most cars are robotic, various smart-road efforts will work to improve capacity and traffic flow. The appearance of robotic safety systems in human driven cars will also reduce accidents and congestion along the way. Free market economist Robin Hanson believes the ability of cities to grow much larger will be one of the biggest consequences of robocar capacity improvements.

Shoot Nikon? Please help review my article on choosing lenses for Nikon cameras

For many years I have had a popular article on what lenses to buy for a Canon DSLR. I shoot with Canon, but much of the advice is universal, so I am translating the article into Nikon.

If you shoot Nikon and are familiar with a variety of lenses for them, I would appreciate your comments. At the start of the article I indicate the main questions I would like people’s opinions on, such as moderately priced wide angle lenses, as well as regular zooms.

If you “got a Nikon camera and love to take photographs” please read the article on what lens to buy for your Nikon DSLR and leave comments here or send them by email to btm@templetons.com. I’m also interested in lists of “what’s in your kit” today.

Can a battery trailer solve range anxiety?

I’ve written before about solutions to “range anxiety” — the barrier to adoption of electric cars which derives from fear that the car will not have enough range and, once out of power, might take a very long time to recharge. It’s hard to compete with gasoline’s 3 minute fill-up and 300 mile ranges. Earlier I proposed an ability to quickly switch to a rental gasoline car if running out of range.

A company called EMAV has proposed a self-propelled battery trailer to solve this problem. While I am not sure how real the company is, the idea has value, particularly when it comes to robotics. As I have written, robocars can solve the “range anxiety” problem in several ways; mainly that robots don’t care about how convenient charging is, and people don’t worry about the range of a taxi beyond the current trip. But batteries are still an issue, even there.

The trailer proposal has the car hitch on the small trailer (which has room for cargo as well) and it provides the extra batteries you need when dong a long trip. The trailer is also motorized so it puts no load on the possibly small car that is “towing” it. EMAV imagines you might buy this, keep it charged, and only put it on when you need to do a long trip.

That could work, but presents a few problems. First of all, cars are much less nimble when they have a trailer on them. Backing up is much harder, and in fact novices will get completely stymied by it. You take an extra-long parking space if you can fit at all. There’s also extra drag.

We might solve the maneuvering problem a bit with a mildly robotic trailer that has a link to the car controls, making backups and turns more natural. This can be done either with steerable wheels on the trailer or just independent motor wheels which can be turned at different speeds. Such a trailer might be able to couple much more closely with the car, possibly going right on the tail so that it acts like an extension of the vehicle. This might also solve the parking problem.

Things could also be aided by making the couple and decouple very simple and easy. That’s a tall order because of safety issues, and the need for a high-current wire. The ideal would be an automatic decouple, so you could temporarily drop the trailer off somewhere if you needed to handle roads and parking where a trailer isn’t workable. Even better but harder would be an automatic recouple, obviously requiring some more sophisticated robotics in the trailer, and a fully safe coupling system.

With standardization, trailers like this could be left on lots all over a city. Anybody with a compatible electric car could, if they needed it, stop off at a convenient lot to grab a trailer. (The trailer would also be in a charging station, making automatic coupling even harder.) With the trailer grabbed there would be no range anxiety. The trailer could simply provide power, or it could go further and charge the car at high speed, allowing the trailer to be dropped off at another charging station an hour or so later. (While this sounds nice, battery chemistries may doom this plan, since you now are putting two batteries through heavy use cycles to get one unit of charge into the car, doubling the battery lifetime cost of the energy.)

While eventually trailers would need to get back to their base after one-way trips, there are lots of ways to encourage various drivers to do that. As long as the dropped trailer is not entirely empty, you can offer drivers who take it back a ride without using their own battery, for example.

This approach might be better than the battery-swap stations planned by “A Better Place.” The Better Place battery swap is cool, but requires all cars that use it be designed around its one particular battery configuration, and that people not own their own batteries. The swap stations are expensive and land intensive, while trailer depots would require nothing but a little land and a charging station for the trailer. A special trailer hitch is a much smaller modification of a car, too.

(One variation of the “PRU” trailer has the trailer contain a diesel generator rather than a battery pack. This of course has the range of liquid fuel, and doesn’t even need a charging station where you drop it of. It’s not being particularly green when used in this fashion of course, a bit worse than a serial hybrid car. If the trailer is heavy enough it could physically push the car and not need an electrical connection to it, though people might get highly confused by steering in such situations.)

As a cheaper and more flexible version of battery swap, this approach could be good for robocars too. Robots, unlike people, will not feel too burdened by the issues of driving a vehicle with a trailer, especially if they can control the trailer’s motors or steering. Parking’s easier too, especially if they can do robotic docking and undocking. While I have written how important it is that people don’t care about the range of a taxi, the owner of a taxi cares about the duty cycle. If they robotic taxi has to spend too much of its time recharging, the return on investment is not nearly as quick. The trailer approach, like the battery swap approach, means downtime only for the batteries, not the vehicle. If the trailers are themselves simple robocars, they can move at low and safe speeds to come meet robocars that need them for a range boost. Even if not, they need not take up much space and they’re easy to scatter everywhere for quick access. Indeed, the car itself might always use a trailer and thus have only enough battery power within it to get from one trailer to the next.

Free conferences that refund your ticket if you show up

There’s a problem I have seen at a number of free events, particularly “unconference” events which have a limited capacity. There will be a sign-up list, and once it fills up, people are turned away or get on a waiting list. (Some online ticket services now support the idea of free tickets for this purpose.)

Then you get to the event and 1/3 of the seats are empty. Because it did not cost anything to sign up, people were quite willing to no-show, and many other people signed up “just in case.” Unfortunately many who would have come decided not to go because the event was full.

To counter this, many events have started putting on a small charge “just for the sake of having a charge.” This charge is in the range of $10 to $30. It discourages signing up just in case, and makes people feel a little more strongly that they should come, but it’s not a burden for most people and raises a small amount of money for the event. (Usually such events are really paid for by sponsors or donors.)

Here’s another idea: Set a price for the event and take and authorize a credit card, but only charge the credit cards of the no-shows. This requires some sort of on-site desk where people can register to not get charged (or get a refund if they used another mechanism like paypal, cheuque or cash.)

The big question is, what should the price be? Many factors change as you change the price:

  • If the price is very high, you start scaring people away from registering, but you will get very few no-shows.
  • If the price is very low, you may still get plenty of no-shows, but now there is at least revenue for it … and empty seats.
  • For some price ranges, a large fraction of the crowd may elect not to refund even though they are at the event, either because it’s a hassle, or they feel like donating. They may feel themselves as cheap by going to ask for their $30 back from a non-profit ad-hoc event. This can help pay for the event.

While it will vary based on the type of event and wealth of the crowd, there is probably an optimal price, which can only be found by experimentation, that both comes as close as possible to filling the room and generating the most revenue from no-shows. It is not out of the question that there could be a price which (combined with a subtle pressure on people to donate rather than refund) pays for the conference.

People who plan to no-show could cancel before the event, possibly just a day before if there is a waiting list. People on the waiting list would not have to pay, but could be told on the morning of the event if they are in. A well managed, real-time waiting list with good predictions on whether people will make it can help assure the room is full.

People who are spending other money to get the conference (ie. booking a flight or hotel) might not have to pay, as they have other penalties for not showing. It’s mostly locals who do the “just in case” sign-up.

If anybody tries this, I would be interested in getting reports about the price and how people reacted to it and how many refunded. Slightly harder is figuring out how many people are scared away by the price, even with the refund promise. Events that are free tend to be free for a reason, and this system might not meet those goals.

Logistics

It would also be nice if ticket services supported this model. It makes sense, as they would get a small cut of any ticket not refunded. Refunds to paypal tend to cost you nothing, though I could see those services getting upset at merchants who are refunding almost all purchases and just using them as a vehicle for free. With cheques, one can also simply not deposit the cheque and even hand it back to the attendee at the conference. But since credit cards and paypal make it so easy, it is tempting to insist on those, and just allow a small fraction of the people to plead that they have no accounts, warning them the exceptions are personally reviewed.

You want to be able to process refunds without a large cost of volunteer or staff time. Of course if there is a registration desk you know who showed up and who didn’t, but most free events don’t want to have such a desk. If everybody uses a credit card, a number of options exist for a self-service desk. For example, they could just swipe the credit card they used at a self-swipe station, as counter-intuitive as “swipe to not be charged” might be. A station which photographs a person’s card or ID could also be self-serve, but requires post-processing.

The web page could also offer a QR code to print, and that printout could be brought and scanned to assure the refund. This could be done by a volunteer’s smartphone, or a self service station with PC and webcam. They need not actually print the code, as cameras can read a QR code from the attendee’s phone screen. Printouts though can also do a pre-printed attendee badge, allowing the person to just cut that out and pick up a badge-holder for it.

This does allow a small amount of cheating, where a no-show asks a friend to print out and show their refund page, but if the fee is low, I doubt there will be much of this. If there is already a staff desk, as most events have, placing the self-serve refund scanner there will discourage people from using it twice just to save a friend some money.

Note that having a refund desk where people have to come in person to ask for their refund will mean that more people decide to donate, so depending on the goals of the event, it may make sense to deliberately not make it trivial to get the refund. Some sponsored events may truly not wish the money, some may be secretly happy for it.

You do want to be sure you are accurate, so that people don’t complain they never got a refund after the fact. Again, I think cheating will be low in this area so it may not be a big concern.

Then, at the end of the conference, send an email to all on their refund status. This allows protests from those who thought they refunded. If the scanner is on-line, it could have emailed about the scan right then and there, and many can see that email right away. For a small amount of money you can also send a text message confirmation; just about anybody can get that.

Pod Car City News, and Vislab reaches Shanghai

I’m at the Pod Car City conference, taking place today and tomorrow in San Jose for PRT developers and customers. Some news tidbits from the conference:

  • There were interesting presentations with videos from the three main vendors of working systems: ULTra (Heathrow), 2GetThere (Masdar) and Vectus (Swedish test track and some more.) Some were new videos showing the systems in action at a level not seen before.
  • Sebastian Thrun of the Google robocar team gave his first outside talk on that project, with some great videos (not released to public, unfortunately.) Quite impressive to see the vehicle handling all sorts of traffic, even deciding when to cross over the solid line in the middle when it’s clear to avoid getting too close to parked cars, just as human drivers do.
  • Sadly, during the public session (before Thrun’s talk) when several audience members sent in questions about the Google cars, both the host from San Jose and the leaders of the 3 PRT companies all punted saying they knew little about them.
  • In spite of that there was intense interest in Thrun’s talk, with lots of questions and not nearly as much negativity as is sometimes directed at robocars from the PRT community.
  • All vendors punted on my question about the current cost of pods (which external estimates suggest is around $100K since they are made in small quantities.)
  • Lots of action in Sweden. Soon, a city will be chosen for a trial PRT system, probably either Stockholm or Uppsala. Then, a company will be picked — most people think it will be Vectus.
  • Vectus, which makes a rail-based PRT, will be installing a system in Suncheon City, South Korea, which will be a people mover into the wetlands park there. Vectus showed many films of how well their system handles bad weather, though they are the only ones to use rails.
  • In Masdar, one of the biggest challenges has been the oppressive heat, and the power for air conditioning. To make the PRT work, stations must be close as people will simply not walk long distances outside when it’s 40 degrees and humid.
  • Interesting note about the rationale that helped sell ULTra at Heathrow: The big advantage is the predictable time of a PRT trip, which normally involves a pod already waiting and a direct trip. Even if that trip is no faster than a parking shuttle, not knowing when the parking shuttle bus will come is a major negative for those going to flights.
  • Ron Diridon of the California High Speed Rail board declares that HSR will be a complete failure if there isn’t something like PRT around the HSR stations to disperse people into the towns. He’s half right — HSR is likely to be a big failure, PRT or not, though the PRT would help.
  • San Jose is doing intensive study of a PRT to serve the airport, the nearby Caltrain and Light Rail stations, along with parking lots, rental cars and a couple hotels. This might well be useful but still is just a parking shuttle mostly. Few people take Caltrain or light rail to the airport (in spite of the existing free bus) and I doubt a lot more will.
  • At the same time, thanks to ULTra, San Jose and other towns are starting to accept PRT as something costing 10-15 million per mile. That’s a lot cheaper than light rail, and in the bay area, hugely cheaper than the 50-year old BART system which people think of as modern.
  • Attended a session on lessons from air traffic management for pod management. Interesting stuff but I don’t think that useful for the problem. Planes get spaced by 5 miles and 2,000 feet. Cars and pods will be spaced by tens of feet.
  • Attended another session on trying to model passenger loads. This session was much more concerned about surge loads in many markets, where a class might let out and suddenly 100 people are at the PRT station trying to use it, removing the no-wait benefit (and the associated high predictability benefit.) One thing Robocars will probably do better since they have no concept of stations and you can get as many cars into an area as you can fit on the road and take out via it. Planners predict that if PRT waits are long in a campus situation, people will walk instead, but you would never have to walk instead with a robocar — just walk away from the crowd to get one.
  • Still too much “transit” oriented thinking in the PRT crowd, I think. In fact, many are hoping to pitch PRT as a feeder which will increase usage of other transit lines. I think transit will fade away in about 25 years.

Vislab completes their autonomous drive to Shanghai

The team from the Vislab autonomous challenge made it to Shanghai, and their cars are now in the Italian pavilion at the World’s Fair. Congratulations to them. They sent me a nice PDF press release. It details elements from their blog about how they almost got a ticket, gave up driving at night, blew through toll booths, picked up hitchhikers, and could not handle crazy drivers.

Heathrow ULTra almost ready, Masdar cybercars scaled way back

There’s news about the world’s two small PRT (Personal Rapid Transit) projects, which are both fairly robocar like, in that they involve self-steered rubber tired vehicles.

The Heathrow ULTra parking shuttle, which has 3 stops, uses pods which travel an ordinary pavement guideway with small curbs on the sides which the vehicle reads to guide itself. This system has been delayed many times, but reports it is finally getting close to opening. ULTra reports their system is now being used in a trial by the employees at LHR Terminal 5, though not the general public. Their newsletter also details how this demonstration system has spurred a fair bit of interest in a number of places, particularly India and Silicon Valley.

ULTra pods require dedicated track and don’t have tools to avoid pedestrians. The initial system is quite small.

The news is worse for the PRT system of Masdar, near Abu Dhabi. Masdar was planned as an all-green, car-free city. Aside from a maglev and light rail, the plan was to use an unusual arabian architecture. The ground level would be used by the PRT cars and other city vehicles, but a second “main floor” level would be built above this with the pedestrian walkways and main entrances to all the buildings. Arab streets are designed to be narrow, and elevated streets for people are easier to make than those for trains. To take the PRT, one would go into the “basement” which was really at ground level. In these streets, cybercars from 2getthere are to run. These are also rubber tire vehicles, but they get their guidance by following magnetic markers embedded in the road. Many people like the magnet approach as it is easy to follow, reliable and fairly cheap to install, even in existing roads.

Unfortunately as reported in Arabian News and this press release the plan for a city full of this “undercroft” and PRT cars has been scaled back. In particular, further reports indicate the elevated pedestrian street model will only be built in a limited zone at and around the university. The PRT will have only a 2 passenger stops, 1.7km of road and only 8 vehicles for the public (plus freight and VIP vehicles and 3 freight stops.) Outside this area will be conventional ground-level streets with conventional transit. It’s not been stated if private cars will also roam the regular streets, since the goal was a car-free city.

The article does make me wonder if they are thinking about robocars for those streets. The 2getthere cybercars do include some basic obstacle avoidance, though they are not ready to go out with the public. But at some point it will be possible, and the Masdar transportation plan might be realized even without the undercroft approach, or combining it with regular shared streets.

Robocars might also make sense for the Heathrow parking lot shuttle. Today the PRT is taking people to two stations in a large outdoor parking lot, but navigating a parking lot is a fairly easy problem for robocars — the environment is roughly controlled, and while there are pedestrians and slow-moving cars going in and out of parking spaces, these are easy to reliably avoid with LIDAR and other sensors. A better parking shuttle might take you right to your car, and pick you up there too if it is able to see people waving, or they text their spot number to a special number.

Of course, even better would be if the car then took you not to the airport entrance but into the airport, right to security. And even better if it was able to pick you up right at your gate and drive you (secured) along the controlled roads of the airport, out the security gate and right to the parking lot, taxi stand and rental car facility.

This has been a busy week of robocar developments, sparked in part by Google’s announcement. However, the PRT developments are just a coincidence.

Berlin University demos a whistlecar

The AutoNOMOS team at Freie Universität Berlin led by Raul Rojas has shown a demo of their robocar acting as what I have called a whistlecar. Their latest car, named “Made in Germany” performed an autonomous taxi pickup for the press which you can see played out in this video.

They’ve built a wireless interface to their car, and in the demo, a developer uses an iPad application to send his GPS coordinates to the car and command it to come to him at a hotel’s entrance. The vehicle (which has been given more detailed maps including a map of the parking lot it is waiting in and the driveway of the hotel) then moves entirely vacant along streets to stop at the hotel entrance. Using the developer interface, they are also able to watch the car on the map as it moves to the hotel, and play out diagnostics on the iPad.

The FU-B team has been quite fond of wireless interfaces. Earlier this year for fun they built an iPhone app to access the drive-by-wire controls of their car so you could steer the car from outside using the iPhone. This is fun, but also in some ways a step back since the car has the ability to drive itself. Remote controlled cars are unexciting in comparison.

What is a major milestone for AutoNOMOS is that they have the confidence to operate Made in Germany entirely vacant on quiet city streets around their university, with the human supervision done by somebody with a remote control outside the vehicle. I would presume the vehicle, if it loses wireless connectivity, stops and attempts to assume a safe state, at least for now. Rojas says they haven’t done this very often, doing most testing on closed courses.

The whistlecar vision is an important one, I believe, for several key reasons. First, it may be deployable before robocars are considered safe enough to carry people at a speed they would accept, and as such it’s one of the incremental steps on the roadmap. Secondly, it enables car delivery, car sharing and autonomous refueling/recharging/servicing. By delivering a shared car that is the right car for a particular trip, transportation can become an order of magnitude more efficient than it is today when everybody rides alone in a sedan or SUV no matter what the trip.

Google not alone with robocar advances

This weekend’s announcement that Google had logged 140,000 miles of driving in traffic with their prototype robocars got lots of press, but it’s not the only news of teams making progress. A team at TU Braunschweig in Germany has their own model which has been driving on ordinary city streets with human oversight. You can watch a video of the car in action though there is a lot of B-roll in that video, so seek ahead to 1:50 and particularly 3:20 for the inside view of the supervisor’s hands hovering just over the self-turning steering wheel. There is some information on Stadtpilot here, but we can see many similarities, including the use of the Velodyne 64 line LIDAR on the roof and a typical array of sensors, and more use of detailed maps.

The team at Vislab in Milan has completed most of their Milan to Shanghai autonomous car journey which I have been following. You can read their blog or watch video (sometimes live) of their trip. A lot of the blog has ended up being not about the autonomous challenges, but just the challenges of taking a fleet of very strange looking vehicles in a convoy across Eastern Europe and Asia. For example, they have trucks which can carry their robocars inside, and once decided it was simpler to cross a border into Hungary this way. However, they left driving the vehicles, and the exit officials got very concerned that there was no record of the robocars coming into the country. I presume it wasn’t hard to convince them they were not smuggling Hungarian robocars out.

 read more »

Google robocar breakthrough

Just released in a New York Times article and sidebar about highways and video, Google has unveiled an internal robot car project that has attained a remarkable level of robotic driving sooner than I and many others had predicted. The project combined the talents of Sebastian Thrun, leader of the Stanley/Junior team that won the Darpa Desert Grand Chellenge and came a close 2nd in the urban challenge, and Christopher Urmson from the CMU team that won the urban challenge and did second in the desert, along with 15 other engineers.

Their remarkable new Prius-based vehicles have completed over 140,000 miles of human-overseen driving on ordinary highways and city streets, including stretches of up to 1,000 miles without the human overseer feeling any need to apply a safety correction. By having a human in the car ready to grab the wheel, and a 2nd person also monitoring systems on a computer screen, the robotic operation on city streets is generally appraised to be legal.

As an example of the human intervention, during the test ride with reporter John Markoff, the human controller took the wheel when a cyclist ran a red light in a “just in case” intervention. Later examination of the sensors showed the car had indeed seen the bicycle and would have been expected to avoid it had the human not taken over.

This legal ability to have supervised driving should help build lots of great test data for robotic cars. Developers can build tools to try to judge whether, when a human intervened, the robot would have done anything particularly different, and look for those cases and judge and correct them. It also means, as I have described earlier, that we can start building the “trillion mile test suite” with all the data needed to do extensive virtual tests on new software revisions and prototype vehicles.

The new robotic Prius also looks a lot slicker than Junior, which very much has the experimental vehicle aesthetic. I expect the high resolution LIDARs to also get smaller and cheaper with time.

Later this week I should get a chance to see these vehicles up close and ride in one for more commentary. These results should make a stronger demonstration of how practical the technology is, to spur development and the legal steps necessary to move towards deployment when appropriate safety levels are reached.

Google of course is not a car company, but Sebastian Thrun has been involved there for some time as a creator of the street view camera car, and Larry Page has a longtime interest in transport innovation. Anthony Levandowski, creator of the Ghost Rider motorcycle entrant in the desert challenge and the PriBot (an earlier robotic Prius which he allowed to take him around the Bay Area while he supervised) is also a Google employee and on the team. Early research in robocars has come from academic labs and small teams, and it’s good to see Google get into funding groundbreaking work in the area.

Google is not a car company — but it has become one of the world’s leading companies in mapping an navigation.

In the long term, robocars should have a positive effect on society that exceeds even that of the search engine; this could become the biggest thing that Google does.

Voluntary Taxes

In my “New Democracy” topic I am interested in ideas about how technology can change democracy and governance. In California, a rule was passed (curiously needing only a 50% majority) that any ballot propositions that wanted to raise new taxes for specific projects needed a 2/3rds majority to come into effect. I’m in agreement with that. My libertarian bent knows the dangers of letting 51% of the people decide to spend the money of 100% of the people on the flavour-of-the-month.

In this county, a proposition that needs 66% asks for a $29 levy on all properties to pay for medical programs for children. How could anybody vote against that? (I have not examined this proposition in detail, but generally when you see “motherhood” propositions on the ballot, particularly bonds, they have been put there by politicians who have other projects they know would not be popular. So they arrange a ballot proposition to raise money for something nobody could be against, which normally they would have had to spend general revenue on, and this frees up general revenue so they can spend it with less accountability.)

But I digress. And I’m not trying to comment on this particular issue or wishing to come out against medicine for children. But in looking at this proposal, it was clear to me that if 2/3rds of voters wanted it, then you would get the same amount of money if 2/3rds of voters just paid $43.50 (50% more) out of their pockets! No need for a vote (which probably costs quite a bit of money) or asking those who don’t agree to pay. In fact, since property owners are probably just a small fraction of the voting population, it might require less than $29 per eligible voter (though not, alas, per ballot casting voter.) With a small amount like this, is there a different way we could do things?

Imagine a contribution system where some sort of publicly funded project could be proposed, with an amount and time period. Each person could register their agreement to pay any amount, including the suggested one, but also less or more. Agreements by registered voters would count as a vote for the plan in addition to being a pledge to pay. (You will see why later.)

The total amount pledged, and the general distribution of it, would be public. People would see if the measure was close to getting its funding target. If it does not reach the target, nobody has to pay. If it reaches the target by a deadline, everybody has to pay what they committed — in fact it is just added to their tax bill. (This works only with property tax and income tax, not with sales taxes.)  read more »

Burning Man 2010 Panoramas with new Flash Viewer

I have put up a page of panoramas from Burning Man 2010. This page includes my largest yet, a 1.2 billion pixel image of the whole of Black Rock City which you will find first on the page. I am particularly proud of it, I hope you find it as amazing as I do.

There are many others, including a nice one of the Man while they dance before the burn with the whole circle of people, a hi-res of the temple and the temple burn, and more.

However, what’s really new is I have put in a Flash-based panorama zoom viewer. This application lets you see my photos for the first time at their full resolution, even the gigapixel ones. You can pan around, zoom in and see everything. For many of them, I strongly recommend you click the button (or use right-click menu) to enter fullscreen mode, especially if you have a big monitor as I do. There you can pan around with the arrow keys and zoom in and out with your mouse wheel. There are other controls (and when not in fullscreen mode you can also use shift/ctrl or +/- for zooming.) A help page has full details.

Go into the gigapixel and shot and zoom around. You’ll be amazed what you find. I have also converted most of my super-size city photos of Black Rock City to the zoom viewer, they can be found at the page of Giant BRC photos as well as many of my favourites from the various years. I’m also working at converting some of my other photos, including the gallery of my largest images which I built recently. It takes time to build and upload these so it will be some while before the big ones are all converted. I may not do the smaller ones.

If you don’t have flash, it displays the older 1100 pixel high image, and you can still get to that via a link. If you have flashblock, you will need to enable flash for my photo site because it will detect you have no flash player and display the old one.

Get out the big monitor and it will feel like you’re standing on a tower in Black Rock City with a pair of binoculars. The gigapixel image is also up on gigapan.

I'm loving the Shweeb concept

There was a bit of a stir when Google last week announced that one of the winners of their 10^100 contest would be Shweeb, a pedal-powered monorail from New Zealand that has elements of PRT. Google will invest $1M in Shweeb to help them build a small system, and if it makes any money on the investment, that will go into transportation related charities.

While I had a preference that Google fund a virtual world for developing and racing robocars I have come to love a number of elements about Shweeb, though it’s not robocars and the PRT community seems to not think it’s PRT. I think it is PRT, in that it’s personal, public and, according to the company, relatively rapid through the use of offline stations and non-stop point to point trips. PRT is an idea from the sixties that makes sense but has tried for almost 50 years to get transit planners to believe in it and build it. A micro-PRT has opened as a Heathrow parking shuttle, but in general transit administrators simply aren’t early adopters. They don’t innovate.

What impresses me about Shweeb is its tremendous simplicity. While it’s unlikely to replace our cars or transit systems, it is simple enough that it can actually be built. Once built, it can serve as a testbed for many of PRT’s concepts, and go through incremental improvements.  read more »

Dustbot, a prototype deliverbot

An Italian team has built a prototype robot they call Dustbot which is aimed (in a backwards way) at the deliverbot vision.

The goal of the dustbot is to travel on demand to houses through the narrow, pedestrian streets of European cities so people can give the robot their trash, which it then takes back to the dump and drops there. It does not automate the pickup of the trash — you have to be there and put your bag into it, though it is able to drop it on it own. It is not clear if they plan to have it operate on streets with cars, or if it is truly ready to wander with civilians.

This is an evolutionary extension of the already common delivery robots used in factory floors and in hospitals. The hospital robots interact with the general public, and do it simply by being so slow that impact or injury is very unlikely, even with a programming error. But looking at the market of the very narrow, mostly or all-pedestrian ancient urban street, the challenge is more difficult than a hospital, but not as difficult as a vehicle that has to go fast enough that it could hurt somebody.

In tune with my predictions about deliverbots, the key is that the robot does not have to be in a hurry, so it can go as slow as is necessary to be safe. As the system improves, that speed gets faster and faster until it’s practical to go on urban streets at 15mph (ducking out of the way of cars) and eventually at the same speed as the cars. This robot can also be limited to a specific area in which it is well tested and armed with accurate data, because that’s much less of a restriction on delivery robots than it is on cars. (If you need to deliver elsewhere, use another service — but people will resist a taxi that will only take them certain places.)

Dustbot is probably too slow right now to be economical, particularly because you must wait for it. A robot that can pick up a standardized container is not too hard, however. One nice advantage of working on the trash problem is that there is no issue in leaving it on the street, so you don’t need to arrange home access for deliveries as a deliverbot would. There’s also little risk of piracy of the cargo, or damaging it.

There’s lots of video and photos on the site, here is a fluffy BBC video about the Dustbot. Note that this is about a year old — I just had not heard of it until recently.

Better meeting-room-to-many video conference calls

Yesterday we had a meeting using some videoconferencing. In a situation I find fairly common, the setup was a meeting room with many people, and then a small number of people calling in remotely. In spite of this being a fairly common situation, I have had trouble finding conferencing systems that do this particular task very well. I have not been looking in the high-priced end but I believe the more modestly priced tools should be able to focus on this and make it work. Yesterday we used Oovoo, one of the few multi-part conference systems to support PC and Mac, with some good but many bad results.

The common answer, namely a speakerphone on the meeting room table and a conference bridge system, is pretty unsatisfactory, though the technology is stable enough that it is easy to get going. The remote people are never really part of the meeting. It’s harder for them to engage in random banter, and the call fidelity is usually low and never better than PSTN phone quality. They usually have trouble hearing some of the people in the meeting room, though fancier systems with remote microphones help a bit with that.

The audio level

The next step up is a higher quality audio call. For this Skype is an excellent and free solution. The additional audio quality offers a closer sense of being in the room, and better hearing in both directions. It comes with a downside in that tools like Skype often pick up ambient noise in the room (mostly with remote callers) including clacking of keyboards, random background noises and bleeps and bloops of software using the speakers of the computer. While Skype has very good echo cancellation for those who wish to use it in speakerphone mode, I still strongly recommend the use of headsets by those calling in remotely, and even the judicious use of muting. There’s a lot more Skype and others could do in this department, but a headset is a real winner, and they are cheap.

Most of these notes also apply to video calling which of course includes audio.  read more »

Robot landing pad for planes without landing gear

Here’s an idea that seems a bit wild and scary at first, but it’s doable today and has broad benefits: Small aircraft that don’t have landing gear, but instead land and take off from robotic “can’t miss” platforms pulled by cables on short airfields.

For every small aircraft purchaser, a big decision is whether to get retractable landing gear. They are very expensive, and create a risk of failure, but your plane will fly a lot faster and be more fuel efficient if you get them. What if we could leave the landing gear on the ground?

Imagine a wheeled platform on the runway with robotic control and a variety of systems to perfectly track an approaching aircraft. Pulled by cables, it can accelerate at several “g”s forward and back and left and right. As the aircraft approaches it tracks it and the cockpit display indicates positive lock. If the plane veers left, it veers left. If the plane speeds up it speeds up. Pretty much no matter what the pilot or winds do (other than missing the runway entirely) the plane can’t miss landing on it. It’s spring loaded so even if the landing is a bit hard the shock is cushioned. Done right, it’s just like having fancy shock absorbing landing gear.  read more »

We already trust our robocars

This story from the Register about a test at the Stanford VAIL Lab reports an interesting result. They created a fake robocar, with a human driver hidden in the back. The test subjects then were told they could push the autopilot button and use the car. And they did, immediately picking up their newspapers to read as they would in a taxi (which is what they really were in.)

Not only that, when they were told the robot could not figure out the situation and needed human assist, they gave it, and then went right back to autopilot.

So trust of a robocar is already at a higher level than we might expect. I’ve ridden in Junior, and K. has stood in front of it, but that was with a human ready to take over the controls. Like many others pondering the future of robotic transportation, I believe we’ll only put robocars on our ordinary streets once they demonstrate a level of safety much superior to human drivers what I call the “robocar vision.” This does not mean a perfect level of safety, though, and the resulting accidents and occasional fatalities will be the cause of much debate and legal wrangling which will slow the development of the technology when it is saving lives.

Update: You might also like the Cute VW concept video where the dad explains to his son all the strange concepts like petrol, driving, traffic jams, accidents and parking.