Topic

The Valley of Danger -- medium speed roads for robocars

With last week’s commercial release of the Navia, I thought I would release a new essay on the challenges of driving robocars at different speeds.

As the Navia shows, you can be safe if you’re slow. And several car company “traffic jam assist” products say the same thing. On the other end, we see demos taking place at highway speeds. But what about the middle range — decent speeds on urban streets?

Turns out that’s one of the harder problems, and so there is a “valley” in the chart which makes safe operation harder in that zone.

So read my more detailed essay on these challenges: The Valley of Danger for Robocars

Induct's "Navia" officially for sale for $250,000

A significant milestone was announced this week. Induct has moved their “Navia” vehicle into commercial production, and is now taking orders, though at $250,000 you may not grab your wallet.

This is the first commercial robocar. Their page of videos will let you see it in operation in European pedestrian zones. It operates unmanned, can be summoned and picks up passengers. It is limited to a route and stops programmed into it.

The “catch” is that it stays safe by going only 20km/h, where it is much harder for it to harm things. It’s aimed at the campus shuttle market, rather than going on public roads, but it drives on ordinary pavement, not requiring special infrastructure, since it localizes using a prepared laser map of the route.

Now 20km/h (12mph) is not very fast, though suitable for a campus shuttle. This slow speed and limited territory may make some skeptical that this is an important development, but it is.

  1. This is a real product, ready to deploy with civilians, without its own dedicated track or modified infrastructure.
  2. The price point is actually quite justifiable to people who operate shuttles today, as a shuttle with human driver can cost this much in 1.5 years or less of operation.
  3. It smashes the concept of the NHTSA and SAE “Levels” which have unmanned operation as the ultimate level after a series of steps. The Navia is at the final level already, just over a constrained area and at low speed. If people imagined the levels were a roadmap of predicted progress, that was incorrect.
  4. Real deployment is teaching us important things. For example, Navia found that once in operation, teen-agers would deliberately throw themselves in front of the vehicle to test it. Pretty stupid, but a reminder of what can happen.

The low speed does make it much easier to make the vehicle safe. But now it become much easier to show that over time, the safe speed can rise as the technology gets better and better. (To a limit — see my article on the dangers at different speeds.)

The route limitation has two elements. The first is that they want to keep it only in safe locations, which makes sense for an early release. It also avoids legal issues. The second is simpler — they are using a map based approach, so they can only drive somewhere that has been mapped. Mapping means driving a scanner over the route and building a map of all the details, and then typically having humans confirm the map. This is the same way that the cars from Google and almost all other vendors do it when they are doing complex things that go beyond following lane markers on a highway. As such it is not that big a barrier. While building new infrastructure is hugely expensive, mapping it is much more modest in comparison, though non-trivial. Covering the whole world would take time, but it becomes possible to quickly add routes and destinations.

I single out the Navia because of its ability to drive without requiring any changes to the roads or extra infrastructure. Previous shuttle-style systems like the ULTra PRT at Heathow (which I rode a couple of months ago), the Masdar PRT and earlier Cybercar projects all required a dedicated guideway or fenced-off ground track to run. While the Navia is being kept to private property for safety and legal reasons, there is no technical reason it could not operate in public spaces, which moves it from PRT into Robocar territory.

The Navia is very much designed to be a shuttle. It is open-air and doesn’t really have seats, just padded bars to lean against. There is no steering wheel or other traditional control. This belies that common expectation of the first vehicles looking just like traditional cars.

Félicitations, Induct.

CES Robocar News

CES has become a big show for announcing car technology. I’m not there this year due to other engagements, but here’s some of what has been in the news.

Most impressive is probably BMW’s prototype 2 and 6 series vehicles, which have features both for existing drivers and for future self-operation. The video below shows a BMW 235i doing a slalom around cones on its own, and then drifting on wet pavement. BMW claims their active assist will help you in both understeer and oversteer situations. That feature wil be in trials in 2015. Here’s an older article on BMW efforts.

Earlier I wrote about Ford’s plan for the C-Max which positions its solar panel under a concentrator which remains more a concept gimmick but is still interesting.

There’s been a raft of “connected car” announcements, by which we mean cars using the mobile network to provide apps and related features. The biggest news is a new consortium planning to use Android as a platform for connected infotainment in cars, called the Open Automotive Alliance. It has GM, Audi, Honda, and Hyundai involved, and of course Google. It may be bad news for QNX, which for now is the remaining shining star in RIM/Blackberry’s portfolio, as QNX has a strong position as the infotainment OS in a number of cars. (Having gone to school at UW long ago, I am friends with all the founders of these companies.)

The win will be cars that don’t try to be too smart, and let the phones do most of the work. My phone is just a few months old, while my car is ten years old, and this ratio is not that uncommon. Put the smarts where the innovation is moving fastest, because even if you don’t, they wild end up there eventually by consumer demand.

Audi is demonstrating their A7 with new self-drive features at CES. It even has Nevada plate number 046 for Autonomous vehicle testing — people are wondering who all these plates have gone to. Google only took a few, Continental took some, and Audi took some around 007. While nobody does primary testing in Nevada, everybody doing test demos at CES needs these plates.

Bosch is running a full “driverless car experience” in their booth and some panels during the show. The panel is happening in just 15 minutes as I write this.

Delphi is also doing a demo of all their driver assist tech. This is mostly aimed at driver monitoring, which is seen as important for the transition to full robocar operation where lots of driver intervention is required.

Induct is showing off the Navia in a track — I write more details about how it is now for sale. Though it’s not quite “consumer” electronics.

No, we don't want much more Fedex and UPS on Dec 24

A big story this Christmas was a huge surge in the use of rush shipping in the last 2 days before Christmas. Huge numbers of people signed up for Amazon Prime, and other merchants started discounting 2 day and overnight shipping to get those last minute sales. In turn, a lot of stuff didn’t get delivered on time, making angry customers and offers of apology discounts from merchants. This was characterized as a “first world problem” by many outside the game, of course.

When I shop, I am usually travelling outside the US and so I have to get stuff even before the 24th, and I’ve had stuff I left to the last day not delivered several times, so I know to avoid doing it. Some packages are not going to make it, and this should be expected — even desired.

While it makes sense to increase the infrastructure a bit as online shopping grows in popularity, you don’t want to go nuts at Christmas. If you need to build your infrastructure to handle every Christmas gift, you have to build it too big, and you pay for that through higher prices the rest of the year. Shippers need to figure out their real capacity, and everybody needs to plan based on it.

The failure this season was not a failure of the delivery system. Rather it was a failure of either the shippers to tell the merchants what their capacity was, and/or a failure of the merchants to communicate to customers that too much was being shipped and not everybody could be promised Dec 24 delivery.

The obvious way to fix this is first to have the shippers get a solid handle on their capacity for the various types of shipping to the various destinations. They can also identify the bottlenecks and widen them a modest amount.

The next thing is for the merchants to know just how much shipping they can buy. There can either be a live spot market — so the merchant web sites just stop offering the delivery promise when the capacity is reached, or merchants could even attempt to pre-contract for capacity, paying for it whether they need it or not (or reselling it if they know they won’t need it.) Merchants should be building their own forecasts about available capacity and querying shippers for updates on just how much more is left. Capacity isn’t a fixed thing — it depends on the size of packages and where they are going and many other things — but this is a problem computers can handle.

Finally, the shippers and the merchants can start increasing the price of the rush shipping so that demand and supply match. This can be based on accurate forecasts, or just live data. As Dec 23rd wears on, the price of next-day shipping will keep going up and up so only the serious buy it. Of course, this might reveal just how keen some people are to get items, and justify having more capacity in years to come. Indeed, as the price goes up, it may make sense for Amazon to say, “Listen, we’re just going to buy this for you at your local Wal-Mart, it will be waiting for you there.” Wal-Mart surely won’t mind that.

There are also some tricks to increase capacity. For example, most people would probably tolerate having to pick up items at a retail location — FedEx and UPS and the USPS of course have tons of those — especially if it is the only option or offers a serious discount over surge priced home delivery. (This is not as good for sending gifts to remote locations.) Temporarily contracted depots could also be used. You want to streamline these depots, as lots of people will be coming in, so you want some nice system where people bring in a bar code and everything is optimized to get them out the door with the right package quickly.

All of this will push people to shop and ship a little earlier, smoothing out the rush, and avoiding having to design the system for one peak day. I have always found it remarkable that most stores and malls have giant parking lots (back in the brick and mortar world) which are only filled in December. It’s such a waste — but something robocars will fix in the future.

Delivery to the wrong address

I had a missed delivery myself this year. In this case it was on December 14th because I went home early, and I had the gifts arriving 2 days before I left. But oddly, I got the note that the package had been delivered at 6pm — but it wasn’t. Both UPS and Amazon had very little set up to handle this. Amazon’s system insists you wait at least a day to complain about this, which was no help to me. I could have used that day to replace the items if I were sure it wasn’t coming.

After I left, the package showed up on my porch on Sunday. UPS does not operate Sunday so it seems pretty likely they had left the package with a neighbour who was perhaps away for a few days. I presume the neighbour eventually came and dropped off the package but they left no note. (Of course I wish they had done it right away — replacing the gifts in Canada cost me a bunch extra.)

Amazon had already given a refund — fairly good service there — and so I just had UPS return the package as undelivered which costs me nothing, so that all worked out, except the scramble and the extra cost of replacing the items.

I don’t know how often this happens — it’s in the Amazon FAQ so it must be often enough — but there are some obvious fixes. The UPS driver’s wand, which scans the package on delivery, should record more data, including any location from a GPS in the wand or the truck, but perhaps more easily the MACs and signal strengths of any WIFI nodes visible when the package was scanned.

That information would have both allowed UPS to say, “OK, that’s odd, this doesn’t match where the package should be going” right when it was scanned, or it would have allowed me to figure out where it went and get it right away.

You’re probably wondering, didn’t I just imagine it was stolen? I did consider that possible, though in my safe neighbourhood it doesn’t appear to be a real danger. Somebody following UPS trucks at Christmas time to steal gifts would be very Grinchey, not to say it doesn’t happen. In safe neighbourhoods, UPS and Fedex routinely just leave packages at the door. Not actually signed for, I presume they just eat the loss the rare times they are stolen, or perhaps the merchant does. It’s small enough shrinkage that the system handles it.

Ford's solar charging robocar design

One of the silly ideas I see often is the solar powered car. In 2011, I wrote an article about the solar powered robocar which explained some of the reasons why the idea is anti-green, and how robocars might help.

I was interested to see a concept from Ford for a solar charging station for a robocar which goes further than my idea.

In the Ford proposal, there is a special garage with sun exposure and a giant Fresnel lens, which can focus light on a solar panel on the car parked in the garage, effectively a solar concentrator based PV system. The trick is that the car is able to move during the day, so as the sun moves (or rather the Earth and the garage turn with respect to the sun) the car adjusts to put the panel in the beam of the Fresnel lens. They predict they could get 21 miles of range in six hours of sunlight. That’s a bit over 5kwh, meaning the panel must generate just under a kw during those 6 hours.

Normally 1kw of solar panel is quite large, and the roof of the garage is large to make this happen. The downside is this would make the panels really, really hot, which reduces their efficiency and frankly, could be dangerously hot and also wear out the panels and roof quickly. (We would need to see what temperature parameters they plan for.)

In the end, this system still falls into the pitfalls that make a green solar powered car a contradiction in terms. To be green, you must use all the power panels generate. When this car is not in the garage, its panel will produce minimal output, since as it moves about its day it will park in shade or at the wrong angle to the sun, and the panels will be horizontal. The only way to properly exploit panels is to have them at the very least facing south in a permanently sunny spot, tilted to the latitude (or sun-tracking) and combined with the grid, so every single joule they generate is put to use.

There is a minor win for solar on a vehicle, which is when you are driving, the energy is never stored, and thus battery weight can be slightly lowered and there are no storage or transmission losses. However, unless you are going to make something like the cars that compete in the solar races, this doesn’t make up for the waste of having panels whose output is mostly unused. Toyota figured out a good use for a panel on the Prius — it runs the ventilation fan, whose demand matches the sunlight and heat of the day. Every joule of that panel is used, and keeping the car cool saves on AC when driving. Had the panel fed into the hybrid battery, its output would be thrown away most of the time when the battery was not low.

As I noted in my earlier article, robocars could make better use of solar panels because they could arrange to always store themselves in the sun, pointed in the right direction, and could even go find connection stations to feed their power back to the grid if the batteries were not low. (You need some robotic ability to connect to the charging station without a human, and ideally without the 10% loss of inductive coupling but even that is tolerable.)

In that world, you could put up Fresnel or other concentrating charging stations which cars could seek out to make the best use of their panels. However, these cars are now consigned to never being garaged or parking in the shade, which is not really what we’re looking for.

This does have the advantage of not needing to plug in, though inductive charging stations are also something robocars would move themselves to. If the vehicles are used off-grid, this would be somewhat more valuable even if on-grid the panels (concentrated or not) should just feed that grid.

There’s another downside to the heat of this system. In the summer at least, you then have to spend a fair bit of energy cooling the car down. The extra energy gained from sitting in the sun might be lost in cooling if the wait was modest. A cooling fan is a good idea while in the sun.

In other News

Michigan has passed its law regulating the testing of robocars there. It’s being touted as a way to “save jobs” by preventing the flight of automaking innovation to other locations. It’s going to be a tall order. The Detroit car companies are opening labs in silicon valley, in part because it’s very difficult to recruit the very best people to come live in Detroit, no matter how cheap the housing is — and you can have a mansion in Detroit for the price of a shack in San Francisco. If Michigan wants to retain its car dominance, it will need to do even more.

Several announcements planned for CES. Delphi will be showing off their latest work, which is more ADAS related. Bosch will be showing off their prototype cars, and presumably Audi and others will return.

Results from the Ann Arbor V2V test bed are expected soon. The original plan was for the DoT to propose regulations demanding V2V in all new cars in 2013. They missed that deadline, of course, but many expect something very soon. Results of this testbed are expected to be crucial. I predict the results will be lukewarm when viewed through the robocar lens — which is to say, the V2V systems will only have been found able to prevent a tiny number of incidents which could not also be detected with advanced sensors directly on the cars. They may not publish that number, as there are incentives to make the test report as a success.

Having secure open wifi (Death to wifi login part 2)

In part 1 I outlined the many problems caused by wifi login pages that hijack your browser (“captive portals”) and how to improve things.

Today I want to discuss the sad state of having security in WIFI in most of the setups used today.

Almost all open WIFI networks are simply “in the clear.” That means, however you got on, your traffic is readable by anybody, and can be interfered with as well, since random users near you can inject fake packets or pretend to be the access point. Any security you have on such a network depends on securing your outdoing connections. The most secure way to do this is to have a VPN (virtual private network) and many corporations run these and insist their employees use them. VPNs do several things:

  • Encrypt your traffic
  • Send all the traffic through the same proxy, so sniffers can’t even see who else you are talking to
  • Put you on the “inside” of corporate networks, behind firewalls. (This has its own risks.)

VPNs have downsides. They are hard to set up. If you are not using a corporate VPN, and want a decent one, you typically have to pay a 3rd party provider at least $50/year. If your VPN router is not in the same geographic region as you are, all your traffic is sent to somewhere remote first, adding latency and in some cases reducing bandwidth. Doing voice or video calls over a VPN can be quite impractical — some VPNs are all TCP without the UDP needed for that, and extra latency is always a killer. Also, there is the risk your VPN provider could be snooping on you — it actually can make it much easier to snoop on you (by tapping the outbound pipe of your VPN provider) than to follow you everywhere to tap where you are.

If you don’t have a VPN, you want to try to use encrypted protocols for all you do. At a minimum, if you use POP/IMAP E-mail, it should be configured to only get and receive mail over TLS encrypted channels. In fact, my own IMAP server doesn’t even accept connections in the clear to make sure nobody is tempted to use one. For your web traffic, use sites in https mode as much as possible, and use EFF’s plugin https everywhere to make your browser switch to https wherever it can.  read more »

The failure of the pan-tilt camera in video calls

This year, we stayed with Kathryn’s family for the holidays, so I attended dinner in my own mother’s home via Skype. Once again, the technology was frustrating. And it need not be.

There were many things that can be better. For those of us who Skype regularly, we don’t understand that there is still hassle for those not used to it. Setting up a good videoconferencing setup is still work. As I have found is always the case in a group-to-solos videoconference, the group folks do not care nearly as much about the conference as the remote solos, so a fundamental rule of design here is that if the remotes can do something, they should be the ones doing it, since they care the most. If there is to be UI, leave the UI to the remotes (who are sitting at computers and care) and not to the meeting room locals. Many systems get this exactly backwards — they imagine the meeting room is the “master” and thus has the complex UI.

In this family setting, however, the clearest problem for me is that no camera can show the whole room. It’s like sitting at the table unable to move your head, with blinders on. You can’t really be part of the group. You also have to be away from the table so everybody there can see you, since screens are only visible over a limited viewing angle.

One clear answer to this is the pan/tilt camera, which is to say a webcam with servo motors that allow it to look around. This technology is very cheap — you’ll find pan/tilt IP security cameras online for $30 or less, and there are even some low priced Chinese made pan/tilt webcams out there — I just picked another up for $20. I also have the Logitech Orbit AF. This was once a top of the line HD webcam, and still is very good, but Logitech no longer makes it. Logitech also makes the BCC950 — a $200 conference room pan/tilt webcam which has extremely good HD quality and a built-in hardware compressor for 1080p video that is superb with Skype. We have one of these, and it advertises “remote control” but in fact all that means is there is an infrared remote the people in the room can use to steer the camera. In our meetings, nobody ever uses this remote for the reason I specify above — the people in the room aren’t the motivated ones.

This is compounded by the fact that the old method — audio conference speakerphones — have a reasonably well understood UI. Dial the conference bridge, enter a code, and let the remotes handle their own calling in. Anything more complex than that gets pushback — no matter how much better it is.  read more »

Canada to stop urban mail home delivery, but fails to abolish snail-mail

Here in Canada, a hot political issue (other than disgust with Rob Ford) is the recent plan by Canada Post to stop home delivery in cities. My initial reaction was, “Wow, I wish we could get that in the USA!” but it turns out all they are doing is making people go to neighbourhood mailboxes to get their mail. For many years, people in new developments have had to do this — they install a big giant mailbox out on the street, and you get a key to get your mail. You normally don’t walk further than the end of your block. However, this will save a lot of work — and eliminate a lot of jobs, which also has people upset.

But let me go back to my original reaction — I want to see home letter delivery abolished.

Why? All I, and most other people get by mail are:

  • Junk mail (the vast bulk of the mail.)
  • One or two magazines
  • Bills and communications from companies that refuse to switch to all-electronic communication
  • Official notices (from governments who refuse to switch to all-electronic communication)
  • Cheques from companies who refuse to do direct deposit (see note below.)
  • Parcels (lots of these, though many more from UPS/Fedex/etc.)
  • A tiny and dwindling number of personal cards and letters. Perhaps 2-3 personal xmas cards.

The abolition of general mail delivery would force all those parties who refuse to do electronic communication to switch to it. The concept of an official e-mail address would arise. We would also need to see a better e-cheque service, something priced like a cheque (ie. not paypal which takes 2% or more) and as easy to use (ACH is not there yet.) This would force it into existing if you could not mail a cheque.

A replacement for registered mail would need to arise — that is what is needed for legal service. Putting that into e-mail is doable though challenging, as it requires adding money to e-mail, because you want people to have to pay to use it so that you don’t get it all the time.

And of course, parcel service would continue. And people who really want to send a letter could send it via parcel service, but not for sub-dollar first class mail prices.

Magazines would have to go all-electronic. Some may not see the world ready for that, but I think the time is very near. Today, one can make cheap large tablets in the 14 to 17 inch size that would be great for magazines. They would be too heavy to handhold (though possibly if they had no batteries and used a small cord they could be light enough for that) but they could easily be held on laps and tables and replace the magazine.

Few would mourn the death of junk mail, though it might lead to more spam in e-mail boxes until that’s under control. Senders of junk mail (notably politicians) might mourn it.

So the only sad thing would be the loss of the dwindling supply of personal letters. People getting married could use the parcel companies or go electronic. Thank-you notes would go electronic, making Miss Manners spin in her grave, but spin she eventually will. Truth is, the parcel companies would probably start up a basic letter service priced higher than 1st class mail but less than their most basic parcel. The more addresses you can share the cost of a truck on, the better — until the deliverbots arrive, at least. This is not easy, though. The postal service got to use the economies of delivering several letters a day to your house, and this could pay for a person to walk the street with a bag full, while the parcel companies use trucks.

We all know this day is coming. The question is, can we do better if we force it, and shut down letter delivery sooner rather than later?

Death to the Wifi login page (part 1)

It’s the bane of the wanderer. A large fraction of open Wifi access points don’t connect you to the internet, but instead want you to login somehow. They do this by redirecting (hijacking) any attempt to fetch a web page to a login or terms page, where you either have to enter credentials, or just click to say you agree to the terms of service. A few make you watch an ad. It’s sometimes called a captive portal.

I’m going to contend that these hijack screens are breaking a lot of things, and probably not doing anybody — including portal owners — any good.

The terms of service generally get you to declare you will be a good actor. You won’t spam or do anything illegal. You won’t download pirated content or join torrents of such content. You waive rights to sue the portal. Sometimes you have to pay money or show you are a hotel guest or have an access card.

These screens are a huge inconvenience, and often worse than that. All sorts of things go wrong when they are in place:

  • Until you do the login with the browser, your other apps, like e-Mail, don’t work though it looks like internet is there.
  • With devices that don’t have keyboards, like Google Glass, you can’t use the network at all!
  • Some redirect you from the link you wanted, and don’t pass you on to that link when you are logged in, you have to type it in again.
  • If you go to a secure URL (https) some of them attempt an insecure redirect and cause browser security warnings. They look like a hijack because they are a hijack! This trains people to be more tolerant of browser security warnings, and breaks tools that try to improve your security and stop more malicious hijacks properly.
  • Some for “security” block the remembering of credentials, making it hard to login every time.
  • Really bad ones time-out quickly, and make you repeat the login process every time you suspend your laptop, and worse, every time you turn off and turn on your phone — making the network almost unusable. Almost all require re-login one or two times a day — still very annoying.
  • Every so often the login systems are broken on mobile browsers, locking out those devices.

A lot of headaches. And one can perhaps understand the need for this when you must pay for the network or only authorized users are allowed in, though WPA passwords are much better for that because they need only one-time setup and also offer security on the wireless connection.

With all this pain, the question the world needs to answer is, “is it worth it?” What is the value of this hijack and “I agree” terms page? Nobody reads the terms, and people who connect, and would ignore the terms to spam or do other bad things, will happily agree to them and ignore them, and they will do so anonymously leaving no way to punish them for violating the terms. This is not to say that certain entities have not desired to actually find users of open Wifi networks and try to enforce terms on them, but this is extremely rare and almost certainly not desirable to most access point operators.

There are thus just a few remaining purposes for the hijack screen.

Charging money

If you want to charge money, you might need a login screen. I don’t deny the right of a provider to ask for money, but there are different ways to do it. There are a variety of aggregator networks (Such as Boingo and FON) which will handle billing. They have already installed an app on the user’s device which allows it to authenticate and handle billing (mostly) seamlessly for the user. The very common skype application is one of these, and people pay from their skype credit accounts. Of course, you may not like Skype’s rates or the cut it takes, so this may not be enough.

You might also want to consider why you are charging the money. If bandwidth is very expensive, I can see it, but it’s not been uncommon to find some sites like cafes saying they charge — I kid you not — because the whole system including the charging gateway — is expensive to run. A cheap free gateway would have been much more affordable. Many operators decide that it’s worth it to offer it free, since it draws people in to restaurants, cafes and hotels. Cheap hotels usually give free Wifi — only expensive hotels put on fat charges.

It could be that your real goal is just to get attention…

Letting them know who provided the Wifi

I’ve seen a number of gateways that primarily seem to exist just to let you know who provided the gateway. Very rarely (I’ve mostly seen this at airports) they will make you watch a short ad to get your free access. They break a lot of stuff to do this. The SSID name is another way to tell them, though of course it’s not nearly as satisfactory.

Reducing the amount of usage

There is a risk that fully open networks will get overused by guests, and often thanklessly, too. You may be afraid your neighbours will realize they don’t need to buy internet at all, and can just use your open network. Here, making it hard to use and broken is a feature, not a bug. If you have to go through the hijack every so often it’s a minor burden to cafe patrons but a bigger annoyance to overusing neighbours. Those neighbours can play tricks, like using programs that do automatic processing of hijack gateways, but not too many do. They can also change their MAC addresses to get past restrictions based on that. You can do MAC limiting without a hijack screen, and it’s a great way to do it, possibly saving the hijack for after they reach the limit, not using it at the start. Clever abusers can change their MACs, though again most people don’t.

Covering your ass

The large number of complex terms of service suggest that people believe, or have been told, that it is essential they keep themselves covered in case a user of open Wifi does something bad, such as spamming or violating copyrights or even nastier stuff. They figure that if they made them agree to a terms-of-service that forbade this, this absolves them of any responsibility for the bad actions, and even, just maybe, offers a way to go after the unwanted guest.

Turns out that there is much less need to cover your ass in this situation, at least in the USA. You aren’t liable for coypright infringement by your guests if you did not encourage it. Thanks to the DMCA and CDA rules, you are probably not liable for a lot of other stuff these unwanted guests might do.

I am interested to hear reports from anybody of how they used the fact that Wifi guests had to agree to terms of service to protect themselves in an actual legal action. I have not heard of any, and I suspect there are few. It would be a great shame to confirm that everybody is breaking their networks in hope of a protection that’s actually meaningless.

It is true that you can get in real world trouble for what your unwanted guests do. If they violate copyrights, you might be the one getting the nasty letter from the copyright holder. The fact that you are not actually liable may not be much comfort when you are faced with taking the time and cost to point that out. Often these lawsuits come with offers to settle for less than the cost of consulting a lawyer on the matter. Naturally, those interested in violating copyrights are unlikely to be all that worried that they clicked on a contract that promised they wouldn’t. This is just a risk of an open network.

Likewise, if they send spam over your network, you may find yourself on spam-blocking blacklists who don’t care that it wasn’t you who did the spamming. Those vigilante groups run by their own rules. Again, the contract isn’t much protection. You may instead want to look to technical measures, including throttling the use of certain ports or bandwidth limits on guests. (It is better if you can throttle rather than cut off, since your guests probably do need to send e-Mail, just not thousands of them.)

Towards a protocol of open guest WIFI

How could we do this better? In part two I talk about how to have a secure open WIFI and the problems in doing that. Part three will talk about how to make it easy to connect to any of these networks automatically.

Wind or solar to filter the pool

One of the biggest issues with wind and solar is that they are intermittent, and so either need storage or grid-tie to work. There really is no good storage, and generally storage-based systems are highly wasteful, throwing away most of the power you generate because you want to keep the storage near full. Grid-tie is the only green choice, but it’s expensive and requires expensive inverters and permits and more.

One solution to this to find work for your renewable energy source to do that fits well with its intermittent nature. Something that will take all the power you generate, but not mind if it comes and goes. Such loads are hard to find. One potential example is pumping water to filter a swimming pool. Its recommended to flow twice the volume of your pool every day in summer, which means around 10kwh of electricity with typical systems. Most people filter their pool using the same pump they use for vacuuming and pool maintenance, which is actually way more powerful than you need for filtering. They offer variable speed pumps, which use a low-power efficient speed for filtering and a high-power speed for vacuum and manual operations, and claim they save a lot.

For those who have a pool, the pump is using as much electricity as all their other appliances in some cases, and so it’s a win to make that greener. Unlike those appliances, the pool water can be filtered any time, as electricity is available, though you can’t let the pool go unfiltered for days, so it’s not perfect. For people who have time-of-use metering, they are wise if they only filter at night, and many do that.

The trick to perfect use of solar for pool pumping would be a smart, multi-speed pump able to run on both the DC from solar panels and the grid power. It would need to do the following:

  • When there is power from the solar panel, run as fast as you can on that power, filtering.
  • When you need high flow, switch to (or combine with) grid power for full power.
  • Track the amount of water filtered, as well as temperature, and when the sun did not provide enough power, run the pump at night off grid power to make up the difference.
  • For extra credit, have a sensor that detects how clear the water is, and adjust grid usage based on that, rather than just weather.

This system would make use of all the power from the panels. As a plus, you need more filtering in summer than you do in winter, which matches what panels do. However, you must not oversize your panels. They can’t be bigger than you need to do all your winter filtering on a series of sunny winter’s days, or you will be wasting their power then.

Key to this plan is that it’s easy to install. Put in the new pump and wire it up to panels. No inverters or electricians and perhaps not even any permits. It doesn’t feed power back to the grid or the house. This is key because panels are now getting very cheap (less than a dollar per watt) and as such installs and permits and other gear are more expensive than the panels.

There are some pool pumps with brushless DC motors sold for solar use. They are expensive and don’t do the smart tricks above, in particular using the grid to take up the slack. They depend instead on overprovisioned solar, or solar systems powering more than a pump.

For $700 you can also buy a floating solar pool filter. This is a nice trick because it’s self-contained, though it’s a rather large thing to float in your pool. It can’t handle the whole filtering load —in fact it only handles about 25% of the load of a typical pool and uses cartridge filters. As such, you still run the regular pump and filter on some schedule, you just run it a bit less.

I noted above that you can get variable speed pumps, and that these, it is claimed, us as little as 1/5th the energy of the full speed pumps for filtering. They cost 2-3x as much as basic one speed pumps, and as a result are not very common. This bodes poorly for the solar proposal here, because if customers aren’t willing to do the up-front investment to save energy for these pumps, few would do the added task of putting up a solar panel and plugging it into such a pump. Comparatively few, that is — solar nerds would love to do it.

As always, the best place to deploy panels to do this would be the sunny, coal-oriented regions like Arizona and New Mexico, where it turns out pools are pretty popular. Once again, the math says that if your goal is to use your money and time to make the world greener, it would be far better to get people in those places to install a system like this on their pools than for you to put panels on your house in California for anything. Putting panels up in California is something you do to feel good.

Wind

Another interesting alternative is wind. Pumping water with wind is perhaps the oldest wind technology out there. In this case, you might even be able to be like an old windmill, and be mechanical, by having the turbine drive a flexible shaft down to the ground to run the pump. Presumably some clever transmission would be needed to maintain filter pressure properly at all windspeeds. You could also do traditional electrical generation from the wind and power a pump like the one above.

Wind has its positives and negatives. Unlike solar, it does not have the natural higher capacity in the summer. It can be much more intermittent. Solar panels still do around 30% to 50% of their rated power on ordinary cloudy days (though this is quite variable based on the panels and local weather patterns) so there is pumping every day. Wind in most places comes and goes. At my house, the winds are high today but it would not generally be suitable as we go weeks without much wind. Wind also prefers a tower near the pool, which has many issues.

UK, Michigan & Sweden push robocars, Toyota doesn't -- and Amazon delivery drones

The past few weeks have been rife with governments deciding to throw support behind robocars.

I wrote earlier about the plan for pods in Milton Keynes, NW of London. The UK has also endowed a a £10m prize fund to build vehicles and for a town to adapt to them. This will be managed in part by the Oxford team which has built a self-driving Wildcat and Nissan LEAF.

In Michigan, they have been working on a new robocar law that may be the next one, and the University of Michigan has a plan to put a fleet of cars out by 2021. Ann Arbor is the site of the ITS V2V testbed, which will probably slow this effort down, but Michigan is keen on not having the auto industry taken away from it.

Volvo, while now a Chinese company, has had many efforts, including their Sartre convoy experiments. Now they have declared that they will have 100 cars on the road in Gothenberg in 2017. They will also build parking systems.

In spite of all this, Toyota recently declared it is only building vehicles for research purposes, and has no desire to market such cars. Toyota had been a leader among the Japanese companies (until Nissan took over that role by building a research lab in silicon valley) but it’s surprising to see them drop out. Of course I predict they will regret that.

Amazon drone delivery

The big news this weekend was the announcement that Amazon.com wants to do drone delivery, accompanied with a concept video. This got everybody buzzing. I was interviewed for stories by the Washington Post and Wall Street Journal (paywall) as well as the New York Times because of my prior writings on deliverbots.

Some of you may remember I post I did early last year on drone defibrillator delivery and the efforts of our students at Singularity University to build Matternet for drone delivery in the developing world.

Drone delivery is interesting, though its big value will be in lightweight, urgent items like medicines. Ground vehicles will still win for cost and efficiency for most items. However, the drones can be much faster, and have options like delivering to places ground vehicles can’t reach — like your roof or your backyard. Deliverbots must get safe and legal on busy streets, drones have to figure out how to not hit one another (or people on the ground) in crowded airspace. The LIDARS that make ground vehicles practical have enough range for ground travel but poor range as flying sensors. Radar is good in the air but can have interference problems.

Getting a drone to land at any given address is a hard problem. There are trees, overhead wires, wind gusts and strange geometries. I suspect drone delivery will work best if the drop location has already been scanned and mapped. However, if there is a decent clearing, I could see it working by having the recipient put down a special marker (like a QR code) on the ground. GPS is not accurate enough to fly with but camera could pull out special markers.

One great marker would be your cell phone. Either with its “flash” LED pointed up and pulsing, or its screen, if the screen is bright enough. Go outside, put your phone down, have it guide the drone partway in with radio and GPS, and then have the drone’s camera follow the flashing light. If phones had better raw GPS access (they don’t — not yet) they could also provide differential GPS information to a drone to guide it in.

This works because with robot delivery, you never need to deliver to an address — you deliver to a person. Wherever that person is, or at least never when the person isn’t there, unless you want to. A robot delivery service will wait for a signal that you are home or one the way before delivering to your home, but might also deliver to you in whatever parking lot you are in, or your office. The robot won’t release the cargo unless it gets the ACK from your phone as you “sign” for it.

Multi-copter drones today don’t have a lot of capacity and range, but it’s improving. Liquid fuels for larger drones might help boost that. Fixed wing drones have much more capacity, but they need runways (or a skilled launcher) to take off. Some fixed-wing drones can land vertically if they have motors powerful enough to lower them down tail first though they tend to need something suitable to land on in such cases.

Robot delivery should make existing retailers, even big box ones like WalMart, scared of online retailers like Amazon. While a drone won’t replace WalMart on a trip where you plan to fill your shopping cart, it might well be very suitable for the things you buy from Walgreens.

International roaming, T-mobile and local SIMs

Back from 5 weeks of international travel, I continue to seek the best solution in my quest for reasonably priced data service when outside the USA.

Data has become a must for me when on the road. In spite of the fact that we all lived without it a decade ago, I find it very frustrating if it’s not available (or priced at $15,000 per gigabyte, which is the typical default roaming rate.) It’s how I find directions, food, tourist info and keep in touch with others.

For a while my normal practice, if in a country for more than a few days, has been to purchase a local SIM card, and of course to have an unlocked GSM phone. Usually local SIMs are now available with 500mb to 1gb of data for $10 to $20. There are various web sites that list the local data providers to help you choose. The best prices tend to come from the MVNOs — not the main incumbent carriers — but even the big carriers tend to have decent prepaid deals. These usually come with some voice minutes and texting. This is useful though I don’t do a lot of voice minutes when overseas due to time zones. I use them to reach local friends, book hotels, check restaurants, and with my companion. Annoyingly, though I have bought many of these SIMs, even for data, it’s not nearly as nice and easy as it should be. A large fraction of the time, something goes wrong.  read more »

The hassles of local SIMs

  • It can often be a pain to research and pick the right carrier, and then to find one of their stores, and get the purchase done. This was particularly true in the past, when selling a SIM to a random foreigner was not a common event at many stores. You have to go out of your way, and deal with people who don’t speak your language. Some providers put a store in the arrival area of the airport, which is great, though they tend to be the more expensive cards.
  • Until you get the new SIM, you are faced with very expensive roaming.
  • Research does matter. In England (where language is not a problem) some carriers give you your data bundle free when you put 10 pounds on the card, others charge you those 10 pounds, leaving you with no voice minutes.
  • Once you get the card, you often have to deal with web sites, menus and voice prompts not in your language. Setting up the voicemail is already a pain, and is far worse if you can’t understand the prompts.
  • Fixing odd problems is difficult in an unfamiliar system. My Orange card had a package of 500mb in it for 10 Euros, (great) but kept draining the money I put on it, leaving it unusable for making calls and texts, and though I can read and speak modest French, I was unable to find the cause.
  • There are always issues of prepaid cards for short use. If you put too much in the card, it’s wasted unless you are coming back soon. If you don’t put enough in, you have to run around buying and adding refills — again with prompts not in your language. Carriers would do well to let you add a lot to the card, and then refund it to you on request. This would make me put more in the card, and use the phone more, so it’s a win for them.
  • As noted, balances usually expire quickly, and cards often expire after 6 months or a year if not used. Though some cards are lasting longer.
  • In some countries, they won’t let you refill from a credit card, which means you must buy cards at local shops with cash, and always have a card handy — then throw away the spare cards when you leave, wasted.
  • You need to learn and give a new phone number to people. You may be able to forward your old number, but often that comes at a high cost. As a plus, you make it much cheaper for locals to call and text you, while making it more expensive for people back home to reach you (unless you forward and eat many times that cost.) You do get the “advantage” that incoming calls and texts are free.
  • Text messages generally do not forward, so you will not see those unless you keep 2 phones — and pay roaming.
  • Calls back home may or may not be quite expensive, but usually are much less than roaming rates on your home SIM.
  • If you move to a different country, you usually have to do it all over again — shop again, and have a new number. In Europe, where it is common to hop from country to country this becomes a real issue. Some prepaid plans allow tolerable voice roaming in other countries, though data roaming tends to still be expensive on prepaid, in spite of a European order to reduce it.
  • You are going to pay $10 to $20 plus your time for all this, and if all you want is to do a few voice minutes and some texts and keep your data usage to wifi, you might not come out ahead on a short trip.

T-Mobile’s new solution

More Robocar Updates and Press

Back from Budapest, tomorrow I head to Buenos Aires to talk cars and security to city officials. (I wondered if I am ending up touring the world in alphabetical order.)

In the meantime, some interesting tidbits and press:

  • One of the best articles about Google’s project in the New Yorker
  • I appear on APM’s “Marketplace Tech” for a short piece on robocars.
  • A new project in the Netherlands spearheaded by TNO & Delft. I visited with TNO early last year to talk to them about their driving simulators and working to convince them that they should focus on LIDAR and self-driving. They were skeptical about the effort back then!
  • More interest from government officials. Hearings in DC today, more progress towards passing a law in Michigan to enable Robocar testing, and a ride by the Japanese PM in several vehicles at the Toyko Motor Show. I also met with top Hungarian officials in Budapest, where a large fraction of their GDP comes from car manufacture. They need to bring the R&D to Hungary to exploit this technology, though. French President Hollande has also called for an initiative there. The jurisdictional competition I wondered about many years ago is getting ready to start humming.

Let’s see what I can tell the Argentinians. They have one of the poorer driving records in Latin America and kill 3 times as many people per 100,000 vehicles than the USA does.

Robocars in Milton Keynes, more surveys and studies

I’m back from one European tour and this weekend back in Budapest for our “Singularity University Summit” on the 15th and 16th. If you are nearby, come check it out.

While I’ve been away, a few news items.

UK Grants and plan for Milton Keynes

In the UK, they want to push for advanced transportation. This includes a 75 million pound grant program, and some money for a robocar taxi system in the town of Milton Keynes, NW of London. Milton Keynes is one of those those “cities of the future of the past” — a planned community with an unusual geometry, and the planned pods may fit right in. At first, they are planning a PRT-like service with private ROW for the pods, and the people involved include companies from the PRT field like ARUP. (It was reported in some news reports that ULTra, which makes the PRT for the Heathrow Airport — I rode it last month — would be involved but they do not appear to be.) The big news is that the plan is for the pods in MK to eventually leave their private ROW and become self-driving taxis operating in the town.

(With any luck I may be on public radio tomorrow talking about this.)

Eventually a billion pound investment is planned in advanced transportation tech.

A town taxi is a worthwhile project, especially because the town can clear the roadblocks. I am less optimistic about what “big infrastructure” project companies like ARUP will do, because they have a different mindset. The great thing though is that even if these cars begin caged, the precedent will let them become truly useful by going door to door. MK was a town designed to be polycentric, with services in every block. Such towns are harder to serve with transit as trips go from anywhere to anywhere. Transit usually goes hand in hand with centralized towns where the vast majority of trips are to and from the city centre.

More studies

The Eno Transportation center released a report on the economics of robocars. This report outlines the cost savings with different levels of deployment, and predicts huge financial benefits even with modest deployment — something readers of this blog will not be surprised to hear reported.

Other studies released include a survey that suggest that 90% of people would use a robocar if it reduced their insurance rates. What’s interesting about this study is the huge number of positives. Prior studies have all seen much smaller numbers of people willing to use a robocar 20-35%. Those studies have been couched in the idea that it’s a new, expensive thing, not a money saver.

At first, robocars will be more expensive, as all new technologies are. But they will save people money in the long run, and the insurance savings will actually be only a small part of that equation. My own forecasts suggest that the price of driving can be cut by at least a third, perhaps by half, through the use of smaller, more efficient vehicles. While the costs of fuel and accidents (insurance) are high, the cost of depreciation is still the biggest cost in operating a car.

Measuring safety

In another nice tidbit, Chris Urmson, the head of the Google car project, gave a talk at RoboBusiness where he outlined some safety metrics being tracked. One of the big problems with robocars is that since humans have accidents only ever 250,000 miles and fatal accidents every 80 million miles, you can’t just drive every new software revision hundreds of millions of miles to compare it to humans. So Google is tracking how often the car does “risky” behaviours that are often found before accidents, like weaving out of lanes or other unsafe moves. And the results, he reports, are very good at present.

Cliff Nass

There has been lots of news coverage in the last month in various media — it is becoming so regular I don’t report it here. But one sad item sent to me involved the sudden death of Clifford Nass of Stanford’s REVS center. Cliff was an HCI expert who was moving his expertise towards cars and other related technologies and was a fixture at local events, always willing to be contrarian with facts to back it up — my kind of guy. It’s a tragedy.

Another survey had serious numbers of people saying that once they got a robocar “they would never drive again.” All these surveys do have an issue as they just propose a hypothetical and let the respondent figure out what it means. The real answers will come when more people get a real chance to try one out.

Robocars European Tour: London, Milan, Lecce, Vienna, Budapest

I’ll be back and forth to Europe in the next month giving a number of talks, mostly about robocars. Catch me at the following events:

  • Wired 2013 UK in London, where 4 Singularity U speakers will do an hour, including me — Oct 17-18. Looks like a great speaker list.
  • Frontiers of Interaction in Milan, Oct 25 — Design, Technology and Interactive.
  • TEDx Lecce in Lecce (boot heel of Italia) on Oct 26 — a major TEDx event with many international speakers.
  • Pioneers Festival in Vienna, Oct 30-31. Reports are this event is great, with an amazing venue. I’ll be interviewed on EFF topics and car topics there.

Singularity University Summit (Europe)

And the big event is the Singularity University Europe Summit a combination of the popular Singularity Summit series and the Singularity University Program. Most of our great faculty will be there for two days in Budapest, November 15-16. Readers of this blog can get a 10% discount by using the promo code “Bradbudapest” when registering. Expect a mini-reunion of a number of our European alumni there. To toot our own horn, the majority of folks who come out of our programs call it the best program they’ve ever been to. At the Franz Liszt Academy of Music in the core of town.

Enough with the Trolley problem, already

More and more often in mainstream articles about robocars, I am seeing an expression of variations of the classic 1960s “Trolley Problem.” For example, this article on the Atlantic website is one of many. In the classical Trolley problem, you see a train hurtling down the track about to run over 5 people, and you can switch the train to another track where it will kill one person. There are a number of variations, meant to examine our views on the morality and ethics of letting people die vs. actively participating in their deaths, even deliberately killing them to save others.

Often this is mapped into the robocar world by considering a car which is forced to run over somebody, and has to choose who to run over. Choices suggested include deciding between:

  • One person and two
  • A child and an adult
  • A person and a dog
  • A person without right-of-way vs others who have it
  • A deer vs. adding risk by swerving around it into the oncoming lane
  • The occupant or owner of the car vs. a bystander on the street — ie. car drives itself off a cliff with you in it to save others.
  • The destruction of an empty car vs. injury to a person who should not be on the road, but is.

I don’t want to pretend that this isn’t an morbidly fascinating moral area, and it will indeed affect the law, liability and public perception. And at some distant future point, programmers will evaluate these scenarios in their efforts. What I reject is the suggestion that this is anywhere high on the list of important issues and questions. I think it’s high on the list of questions that are interesting for philosophical class debate, but that’s not the same as reality.

In reality, such choices are extremely rare. How often have you had to make such a decision, or heard of somebody making one? Ideal handling of such situations is difficult to decide, but there are many other issues to decide as well.

Secondly, in the rare situations where a human encounters such a moral dilemma, that person does not sit there and have an inner philosophical dialogue on which is the most moral choice. Rather, they will go with a quick gut reaction, which is based on their character and their past thinking on such situations. Or it may not be that well based on them — it must be done quickly. A robot may be incapable of having a deep internal philosophical debate, and as such the robots will also make decisions based on their “gut,” which is to say the way they were programmed, well in advance of the event. A survey on robohub showed that even humans, given time to think about it, are deeply divided both on what a car should do and even how easy it is answer the question.

The morbid focus on the trolley problem creates, to some irony, a meta-trolley problem. If people (especially lawyers advising companies or lawmakers) start expressing the view that “we can’t deploy this technology until we have a satisfactory answer to this quandry” then they face the reality that if the technology is indeed life-saving, then people will die through their advised inaction who could have been saved, in order to be sure to save the right people in very rare, complex situations. Of course, the problem itself speaks mostly about the difference between failure to save and overt action to harm.

It turns out the problem has a simple answer which is highly likely to be the one taken. In almost every situation of this sort, the law already specifies who has the right of way, and who doesn’t. The vehicles will be programmed to follow the law, which means that when presented with a choice of hitting something in their right-of-way and hitting something else outside the right-of-way, the car will obey the law and stay in its right-of-way. The law says this, even if it’s 3 people jaywalking vs. one in the oncoming lane. If people don’t like the law, they should follow the process to change it.

I suspect companies will take very conservative decisions here, as advised by their lawyers, and they will mostly base things on the rules of the road. If there’s a risk of having to hit somebody who actually has the right-of-way, the teams will look for a solution to that. They won’t go around a blind corner so fast they could hit a slow car or cyclist. (Humans go around blind corners too fast all the time, and usually get away with it.) They won’t swerve into oncoming lanes, even ones that appear to be empty, because society will heavily punish a car deliberately leaving its right-of-way if it ends up hurting somebody. If society wants a different result here, it will need to clarify the rules. The hard fact of the liability system is that a car facing 5 jaywalking pedestrians that swerves into the oncoming lane and hits a solo driver who was properly in her lane will face a huge liability for having left their lane, while if it hits the surprise jaywalkers, the liability is likely to be much less, or even zero, due to their personal responsibility. The programmers normally won’t be making that decision, the law already makes it. When they find cases where the law and precedent don’t offer any guidance, they will probably take the conservative decision, and also push for it to give that guidance. The situations will be so rare, however, that a reasonable judgement will be to not wait on getting an answer.

Real human driving does include a lot of breaking the law. There is speeding of course. There’s aggressively getting your share in merges, 4-way stops and 3-point turns. And a whole lot more. Over time, the law should evolve to deal with these questions, and make it possible for the cars to compete on an equivalent level with the humans.

Swerving is particularly troublesome as an answer, because the cars are not designed to drive on the sidewalk, shoulder or in the oncoming lane. Oh, they will have some effort put into that, but these “you should not be doing this” situations will not get anywhere near the care and testing that ordinary driving in your proper right-of-way will get. As such, while the vehicles will have very good confidence in detecting obstacles in the places they should go, they will not be nearly as sure about their perceptions of obstacles where they can’t legally go. A car won’t be as good at identifying pedestrians on the sidewalk because it should never, or almost never drive on the sidewalk. It will instead be very good at identifying pedestrians in crosswalks or on the road. Faced with the option to avoid something by swerving onto the sidewalk, programmers will have to consider that the car can’t be quite as confident it is safe to do this illegal move, even if the sidewalk is in fact perfectly clear to the human eye. (Humans are general purpose perception systems and can identify things on the sidewalk as readily as they can spot them on the road.)

It’s also asking a lot more to have the cars able to identify subtleties about pedestrians near the road. If you decide a child should be spared over an adult, you’re asking the car to be able to tell children from adults, children from dwarves, tall children from short adults — all to solve this almost-never-happens problem. This is no small ask, since without this requirement, the vehicles don’t even have to tell a dog from a crawling baby — they just know they should not run over anything roughly shaped like that.

We also have to understand that humans have so many accidents, that as a society we’ve come to just accept them as a fact of driving, and built a giant insurance system to arrange financial compensation for the huge volume of torts created. If we tried to resolve every car accident in the courts instead of by insurance, we would vastly increase the cost of accidents. In some places, governments have moved to no-fault claim laws because they realize that battling over something that happens so often is counterproductive, especially when from the standpoint of the insurers, it changes nothing to tweak which insurance company will pay on a case by case basis. In New Zealand, they went so far as to just eliminate liability in accidents, since in all cases the government health or auto insurance always paid every bill, funded by taxes. (This does not stop people having to fight the Accident Compensation Crown Corporation to get their claims approved, however.)

While the insurance industry total size will dwindle if robocars reduce accident rates, there are still lots of insurance programs out there that handle much smaller risks just fine, so I don’t believe insurance is going away as a solution to this problem, even if it gets smaller.

Locking devices down too hard, and other tales of broken phones

One day I noticed my nice 7 month old Nexus 4 had a think crack on the screen. Not sure where it came from, but my old Nexus One had had a similar crack and when it was on you barely saw it and the phone worked fine, so I wasn’t scared — until I saw that the crack stopped the digitizer from recognizing my finger in a band in the middle of the screen. A band which included dots from my “unlock” code.

And so, while the phone worked fine, you could not unlock it. That was bad news because with 4.3, the Android team had done a lot of work to make sure unlocked phones are secure if people randomly pick them up. As I’ll explain in more detail, you really can’t unlock it. And while it’s locked, it won’t respond to USB commands either. I had enabled debugging some time ago, but either that doesn’t work unlocked or that state had been reset in a system update.

No unlocking meant no backing up the things that Google doesn’t back up for you. It backs up a lot, these days, but there’s still dozens of settings, lots of app data, logs of calls and texts, your app screen layout and much more that’s lost.

I could repair the phone — but when LG designed this phone they merged the digitizer and screen, so the repair is $180, and the parts take weeks to come in at most shops. Problem is, you can now buy a new Nexus 4 for just $199 (which is a truly great price for an unlocked phone) or the larger model I have for $249. Since the phone still has some uses, it makes much more sense to get a new one than to repair, other than to get that lost data. But more to the point, it’s been 7 months and there are newer, hotter phones out there! So I eventually got a new phone.

But first I did restore functionality on the N4 by doing a factory wipe. That’s possible without the screen, and the wiped phone has no lock code. It’s actually possible to use quite a bit of the phone. Typing is a pain since a few letters on the right don’t register but you can get them by rotating. You would not want to use this long term, but many apps are quite usable, such as maps and in particular eBook reading — for cheap I have a nice small eBook reader. And you can make and receive calls. (Even on the locked phone I could receive a call somebody made to me — it was the only thing it could do.) In addition, by connecting a bluetooth mouse and keyboard, I could use the phone fully — this was essential for setting the phone up again, where the lack of that region on the touchpad would have made it impossible.

One of my security maxims is “Every security system ends up blocking legitimate users, often more than it blocks out the bad guys.” I got bitten by that.  read more »

The robocar and the bicycle

I’ve written about the issues relating to robocars and walking before. On one hand, some people may find themselves hardly ever walking with convenient door-to-door robocar transportation. Others may find the robocars may enable walking by allowing one-way waking trips, or enabling trips that that allow drive-walk-drive (eliminating short driving trips done just to save the trouble of walking back to get the car.)

Some similar factors apply to cycling. In a lot of the world, people bike because it’s much cheaper and they can’t afford a car. In the richer countries, most people can afford cars, but people bike because they enjoy it, or seek the exercise. They may also wish to avoid traffic, take routes only bikes can take, or avoid burning gasoline.

Let’s consider something possible with robocars: on-demand bicycle delivery. This could either be small delivery robots which can hold bicycles, or the “bikebot” — a small robot that clamps onto a bicycle and uses the bike’s wheels in concert with the robot’s. The bikebot could be a very efficient way to delivery a bicycle — certainly using less energy per mile than a human being does, or that producing the human’s food does. (A future bike could be designed so that a bikebot module can be clamped to it easily.)

Bicycles on demand offer the chance to cycle just when you want to. This could increase by quite a bit the times when you actually would cycle.

This gets combined with the robocar’s one-way taxi ability for humans. The robocar can bring the humans, and/or the bicycles to the places they want to bike. (More efficiently, too, since bikes on bike racks are not very aerodynamic.)

Just like it does for walking, the multi-mode, multi-leg trip becomes enabled. For example, I often find I drive to Google, and then to Nasa which is 2.5 miles away, and then back home. The 2.5 mile leg is ideal for cycling — there’s even a bike trail for much of it — but I can’t do this. First I would have to always bring my bike. (While Google does provide bikes, they are tiny single-gear bikes not meant to leave campus.) I could do the round-trip to come back and get my car, but that’s less convenient and can hit some nasty traffic patterns — traffic in and out of Google at rush hour is very bad. This is a personal example, but I am sure you can all think of examples from your own life where you take an intermediary trip today (in your car) of a few miles that might be very nice for biking.

Weather is another impediment to biking. When I used to bike commute, I would drive instead if the forecast called for rain in the afternoon, even if it was nice in the morning. With robocars I could bike in, and ride back.

Bike delivery means choice of bike. Recumbents are hard to carry in cars, but no challenge for a custom bike delivery robot. They are more comfortable to ride and faster on flats and downhill. You could even climb a hill in a diamond bike and descend in a recumbent. Or, let’s face it, you could also have the cheater’s option of climbing the hard hills in a car, or with power assist, and riding alone when going down or traversing flatter terrain. That might be a cheater’s option, but it would get more people cycling. Your gear could shadow you in a small cargo robot.

The robocar also offers easy transportation for you, and your bikes, to the places where it’s fun to bike. Get driven to the coast, then bike it, then get driven back from your endpoint. Or bike the “interesting parts” and drive the boring (or difficult) ones.

The main issue? At least at first, a human will need to be there to put a bike into a bike-delivery robot or clamp a bikebot on the bike. That means you must declare your destination in advance, with enough time to get that robot to that spot so you can hand over the bike. Perhaps in the future, there will be robots that can pick up a waiting bike without a human to help. Quick one-way trips will probably not be with your personal bike, but rather a rental. While there are those who insist on their personally chosen bike for long rides, most people can tolerate a quality rental bike for a quick urban leg. Trikes, which are super easy to ride, can also be offered, and even bikes and trikes with motor assist when you want the non-exercise advantages of a bicycle could be provided.

Cycling could also be great for commute times. Many commuters might be happy to get a ride (perhaps even in groups) to the outskirts of the CBD, but as they enter the congested zone, have their car drop them off next to a bike for a quick ride to work. Long enough to get some exercise but not long enough to need a shower. This does present a problem when it rains and everybody wants to ride all the way in, though.

In the less developed world, where the bicycle is the transportation of choice due to cost, the robocar will take away some riders as it offers lower-cost transportation, protected from the weather, without up-front investment. However, eventually the above factors from the developed world will bring people back to the bicycle even though they can afford the car.

Will EV recharging soar to very high costs?

I recently read a complaint by an EV driver that the charging station at De Anza College cost 55 cents/kwh. The national average price for electricity is around 10 cents, and at that price a typical electric car costs under 3 cents/mile for electricity. Gasoline costs about 8 cents/mile in a Prius, about 13 cents in a decent non-hybrid and 18 cents/mile in the average car which gets 22mpg. (At least here in California.) But the college’s charger’s electricity is almost 15 cents/mile in most electric sedans today, which is more than the gasoline in any gasoline car an eco-conscious person is likely to buy. (California Tier III electricity is 30 cents/kwh and thus almost as much.)

The price of charging stations varies wildly. A lot of them are free still, financed by other motivations. Tesla’s superchargers are free — effectively part of the cost of the car. It’s not uncommon for parking lots to offer free charging if you pay for parking, since parking tends to cost a fair bit more. After all, you won’t put more than 20kwh in a Leaf (and probably a lot less) and that costs just $2 at the average grid price.

This got me thinking of how the economics of charging will work in the future when electric cars and charging stations are modestly plentiful. While the national grid average is 10 cents, in many places heavy users can pay a lot more, though there are currently special deals to promote electric cars. Often the daytime cost for commercial customers is quite a bit higher, while the night is much lower. Charging stations at offices and shops will do mostly day charging; ones in homes and hotels will do night charging.

Unlike gasoline pumping, which takes 5 minutes, charging also involves parking. This is not just because charging takes several hours, but because that is enough time that customers won’t want to come and move their car once full, and so they will take the space for their full parking duration, which may be 8 or more hours.

Charging stations are all very different in utility. While every gasoline station near your route is pretty much equivalent to you, your charging station is your parking spot, and as such only the ones very close to your destination are suitable. While a cheap gas station 2 miles off your route would have a line around the block, a free charging stations 2 miles away from your destination is not that attractive! More to the point, the charging point close to your destination is able to command a serious premium. That have a sort of monopoly (until charging stations become super common) on charging at the only location of value to you.

Put another way, when buying gasoline, I can choose from all the stations in town. When picking an EV charge, I can only choose from stations with an available spot a short walk from my destination. Such a monopoly will lead to high prices in a market where the stations are charging (in dollars :-) what the market will bear.

The market will bear a lot. While the electricity may be available cheap, EV owners might be easily talked into paying as much for electricity as gasoline buyers do, on a per-mile basis. The EV owners will be forgetting the economics of the electric car — you pay the vast bulk of your costs up front for the battery, and the electrical costs are intended to be minor. If the electricity cost rivals that of gasoline, the battery cost is now completely extra.

Naturally, EV owners will do at least half their charging at home, where they negotiate the best rate. But this could be worse, as they might well be talked into looking at the average. They could pay 80 cents/kwh in the parking lot and 10 cents/kwh at home, and figure they are getting away with 45 cents and “still beating gasoline.” They would be fooling themselves, but the more people willing to fool themselves, the higher prices will go.

There is another lack of choice here. For many EV drivers, charging is not optional. Unless they have easy range to get back home or to another charging place they will spend lots of time, you must charge if you are low and the time opportunity presents itself. To not do so is either impossible (you won’t get home) or very foolish (you constrain what your EV can do.) When you face a situation where you must charge, and you must charge in a particular place, the potential for price gouging becomes serious.  read more »

A Tesla self-driving car?

It began with reports on a job ad at Tesla for an ADAS engineer to work on self-driving systems, and now there is a declaration from Elon Musk of a desire for a semi-automated car in three years. Musk says he expect the car to be “90% automated” which I will interpret as meaning it does highway driving. It is not said if this is the same sort of highway driving found in products like Cadillac’s “super cruise” or similar offerings from BMW, Mercedes, Volvo and others — which requires the driver be alert and watching, or a much harder full cruise ability that allows the driver to do other things, like read. I’m pretty sure it’s not a car that can run unmanned — Musk correctly feels that is a whole lot extra.

My reaction to this is mixed, in that there are things that make sense and don’t make sense.

On the plus side:

  • Tesla is a great car company, and as a brand new one, perhaps the one most capable of not thinking like a car company. This is a big advantage. There is already a great culture of car innovation there.
  • Tesla has a focus on great and novel car experiences, regardless of price, and this fits in well with that. Their customers will not be bothered by the initial high cost of the hardware.
  • Their cars are already pretty much drive-by-wire and easy to adapt.
  • If Tesla does decide to work with Google (the articles say they will not) there is already a strong friendship between the two CEOs
  • Even in the best car, there are certainly lots of roads where you would rather not do the driving.
  • With inductive charging (or some fancy plugging-in robot) it’s possible the car could do some self-parking and more importantly, self-recharging.

On the negative:

  • Tesla’s cars are hugely fun to drive. While I believe for every car there value in having it drive itself on many roads, I would have to say the Teslas are the cars for which this is the least true! So it’s not that one would not appreciate self-driving in one’s Tesla, but it’s just that you would appreciate it even more in almost all other cars.
  • Electric cars are not currently suitable as taxis that drive all-day, though Tesla has talked about battery swap, which would solve that issue. I doubt they mean to sell them for that market, as they would not be self-delivering in any event.
  • Teslas are unjustifiably expensive. Well, unjustifiable to other than early adopters or those who just want the best at almost any price. That may change as batteries drop in price, though.
  • If this is just super-cruise where you must pay attention, it’s nice, but not a revolution. Not yet, anyway.