You are here

Robocars

The future of computer-driven cars and deliverbots

Delphi completes trans-continental drive, and Hyundai goes big

Most of the robocar press this week has been about the Delphi drive from San Francisco to New York, which completed yesterday. Congratulations to the team. Few teams have tried to do such a long course and so many different roads. (While Google has over a million miles logged in their testing by now, it's not been reported that they have done 3,500 distinct roads; most testing is done around Google HQ.)

Topic: 

Matternet launches drone delivery platform

I often speak about deliverbots -- the potential for ground based delivery robots. There is also excitement about drone (UAV/quadcopter) based delivery. We've seen many proposed projects, including Amazon prime Air and much debate.

Delphi's cross-country trip and a raft of Robocar News

I've been on the road, and there has been a ton of news in the last 4 weeks. In fact, below is just a small subset of the now constant stream of news items and articles that appear about robocars.

Delphi has made waves by undertaking a road trip from San Francisco to New York in their test car, which is equipped with an impressive array of sensors. The trip is now underway, and on their page you can see lots of videos of the vehicle along the trek.

The Delphi vehicle is one of the most sensor-laden vehicles out there, and that's good. In spite of all those who make the rather odd claim that they want to build robocars with fewer sensors, Moore's Law and other principles teach us that the right procedure is to throw everything you can at the problem today, because those sensors will be cheap when it comes time to actually ship. Particularly for those who say they won't ship for a decade.

At the same time, the Delphi test is mostly of highway driving, with very minimal urban street driving according to Kristen Kinley at Delphi. They are attempting off-map driving, which is possible on highways due to their much simpler environment. Like all testing projects these days, there are safety drivers in the cars ready to intervene at the first sign of a problem.

Delphi is doing a small amount of DSRC vehicle to infrastructure testing as well, though this is only done in Mountain View where they used some specially installed roadside radio infrastructure equipment.

Delphi is doing the right thing here -- getting lots of miles and different roads under their belt. This is Google's giant advantage today. Based on Google's announcements, they have more than a million miles of testing in the can, and that makes a big difference.

Hype and reality of Tesla's autopilot announcement

Telsa has announced they will do an over the air upgrade of car software in a few months to add autopilot functionality to existing models that have sufficient sensors. This autopilot is the "supervised" class of self driving that I warned may end up viewed as boring. The press have treated this as something immense, but as far as I can tell, this is similar to products built by Mercedes, BMW, Audi and several other companies and even sold in the market (at least for traffic jams) for a couple of years now.

The other products have shied away from doing full highway speed in commercial products, though rumours exist of it being available in commercial cars in Europe. What is special about Tesla's offering is that it will be the first car sold in the US to do this at highway speed, and they may offer supervised lane change as well. It's also interesting that since they have been planning this for a while, it will come as a software upgrade to people who bought their technology package earlier.

UK project budget rises to £100 million

What started with a £10 million pound prize has grown in the UK has become over 100m in grants in the latest UK budget. While government research labs will not provide us with the final solutions, this money will probably create some very useful tools and results for the private players to exploit.

MobilEye releases their EyeQ4 chip

MobilEye from Jerusalem is probably the leader in automotive machine vision, and their new generation chip has been launched, but won't show up in cars for a few years. It's an ASIC packed with hardware and processor cores aimed at doing easy machine vision. My personal judgement is that this is not sufficient for robocar driving, but MobilEye wants to prove me wrong. (The EQ4 chip does have software to do sensor fusion with LIDAR and Radar, so they don't want to prove me entirely wrong.) Even if not good enough on their own, ME chips offer a good alternate path for redundancy

Chris Urmson gives a TeD talk about the Google Car

Talks by Google's team are rare -- the project is unusual in trying to play down its publicity. I was not at TeD, but reports from there suggest Chris did not reveal a great deal new, other than repeating his goal of having the cars be in practical service before his son turns 16. Of course, humans will be driving for a long time after robocars start becoming common on the roads, but it is true that we will eventually see teens who would have gotten a licence never get around to getting one. (Teems are already waiting longer to get their licences so this is not a hard prediction.)

The war between DSRC and more wifi is heating up.

2 years ago, the FCC warned that since auto makers had not really figured out much good to do with the DSRC spectrum at 5.9ghz, it was time to repurpose it for unlicenced use, like more WiFi.

There is now a bill to force this being proposed.

Topic: 

Uber price in LA approaches robocar cheap

I was recently considering the price of UberX in Los Angeles. It's gotten disturbingly low:

Flag drop: $0 18 cents/minute 90 cents/mile

This is not a very good deal for the driver. After Uber's 20% cut, that's 72 cents/mile. According to AAA, a typical car costs about 60 cents/mile to operate, not including parking. (Some cars are a bit cheaper, including the Prius favoured by UberX drivers.) In any event, the UberX driver is not making much money on their car.

Issues in regulating robocars, and the case for a light hand

All over the world, people (and governments) are debating about regulations for robocars. First for testing, and then for operation. It mostly began when Google encouraged the state of Nevada to write regulations, but now it's in full force. The topic is so hot that there is a danger that regulations might be drafted long before the shape of the first commercial deployments of the technology take place.

Topic: 
Tags: 

Keep Calm and Carry Passengers -- UK robocar projects level up

The government baked robocar projects in the UK are going full steam, with this press release from the UK government to accompany the unveiling of the prototype Lutz pod which should ply the streets of Milton Keynes and Greenwich.

Topic: 

Is Apple building a robocar? Maybe, maybe not

There is great buzz about some sensor-laden vehicles being driven around the USA which have been discovered to be owned by Apple Computer. The vehicles have cameras and LIDARs and GPS antennas and many are wondering is this an Apple Self-Driving Car? See also speculation from cult of Mac.

Topic: 

Uber and Google are not breaking up quite yet

After yesterday's story about Uber and CMU, a lot of speculation has flown that Uber will now be at odds with Google, both about building robocars and also on providing network taxi service, since another rumour said Google plans to launch an Uber like "ride share" service.

Topic: 
Tags: 

Will robocars use V2V at all?

I commonly see statements from connected car advocates that vehicle to vehicle (V2V) and vehicle to infrastructure communications are an important, even essential technology for robocar development. Readers of this blog will know I disagree strongly, and while I think I2V will be important (done primarily over the existing mobile data network) I suspect that V2V is only barely useful, with minimal value cases that have a hard time justifying its cost.

Of late, though, my forecast for V2V grows even more dismal, because I wonder if robocars will implement V2V with human-driven cars at all, even if it becomes common for ordinary cars to have the technology because of a legal mandate.

The problem is security. A robocar is a very dangerous machine. Compromised, it can cause a lot of damage, even death. As such, security will have a very strong focus in development. You don't want anybody breaking into the computer systems or your car or anybody else's. You really don't want it.

One clear fact that people in security know -- a very large fraction of computer security breaches caused by software faults have come from programs that receive input data from external sources, in particular when you will accept data from anybody. Internet tools are the biggest culprits, and there is a long history of buffer overflows, injection attacks and other trouble that has fallen on tools which will accept a message from just anyone. Servers (which openly accept messages from outside) are at the greatest risk, but even client tools like web browsers run into trouble because they go to vast numbers of different web sites, and it's not hard to trick people to sending them to a random web site.

We work very hard to remove these vulnerabilities, because when you're writing a web tool, you have no choice. You must accept input from random strangers. Holes still get found, and we pay the price.

The simplest strategy to improve your chances is to go deaf. Don't receive inputs from outside at all. You can't do that in most products, but if you can close off a channel without impeding functionality it's a good approach. Generally you will do the following to be more secure:

  1. Be a client, which means you make communications requests, you do not receive them.
  2. You only connect to places you trust. You avoid allowing yourself to be directed to connect to other things
  3. You use digital signature and encryption to assure that you really are talking to your trusted server.

This doesn't protect you perfectly. Your home server can be compromised -- it often will be running in an environment not as locked down as this. In fact, if it becomes your relay for messages from outside, as it must, it has a vector for attack. Still, the extra layer adds some security.

Topic: 
Tags: 

Uber to research robocars?

Rumours reported in TechCrunch suggest Uber is opening a robocar lab in Pittsburgh and hiring up to 50 CMU folks to staff it.

Update: On the Uber blog we now see it's more funding of research labs at CMU, on many topics

Topic: 
Tags: 

UMich team works on perception and localization using cameras

Some new results from the NGV Team at the University of Michigan describe different approaches for perception (detecting obstacles on the road) and localizations (figuring out precisely where you are.) Ford helped fund some of the research so they issued press releases about it and got some media stories. Here's a look at what they propose.

Topic: 

Might the first, supervised robocars be... well... boring?

Let me confess a secret fear. I suspect that the first "autopilot" functions on cars is going to be a bit boring.

I'm talking the offerings like traffic jam assist from Mercedes, super cruise from Cadillac and others. The faster highway assist versions which combine ADAS functions like lane-keeping and adaptive cruise control to keep the car in its lane and a fixed distance from the car in front of you. What Tesla has promoted and what scrappy startup "Cruise" plans to offer as a retrofit later this year. This is, in NHTSA's flawed "levels" document what could be called supervision type 2.

Some of them also offer lane change, if you approve the safety of the change.

All these products will drive your car, slow or fast on highways, but they require your supervision. They may fail to find the lane in certain circumstances, because the makers are badly painted, or confusing, or just missing, or the light is wrong. When they do they'll kick out and insist you drive. They'll really insist, and you are expected to be behind the wheel, watching and grabbing it quickly -- ideally even noticing the failure before the system does.

Some will kick out quite rarely. Others will do it several times during a typical commute. But the makers will insist you be vigilant, not just to cover their butts legally, but because in many situations you really do need to be vigilant.

Testing shows that operators of these cars get pretty confident, especially if they are not kicking out very often. They do things they are told not to do. Pick up things to read. Do e-mails and texts. This is no surprise -- people are texting even now when the car isn't driving for them at all.

To reduce that, most companies are planning what they call "countermeasures" to make sure you are paying attention to the road. Some of them make you touch the wheel every 8 to 10 seconds. Some will have a camera watching your eyes that sounds an alarm if you look away from the road for too long. If you don't keep alert, and ignore the alarms, the cars will either come to a stop in the middle of the freeway, or perhaps even just steer wild and run off the road. Some vendors are talking about how to get the car to pull off safely to the side of the road.

There is debate about whether all this will work, whether the countermeasures or other techniques will assure safety. But let's leave that aside for a moment, and assume it works, and people stay safe.

I'm now asking the harder question, is this a worthwhile product? I've touted it as a milestone -- a first product put out to customers. That Mercedes offered traffic jam assist in the 2014 S-Class and others followed with that and freeway autopilots is something I tell people in my talks to make it clear this is not just science fiction ideas and cute prototypes. Real, commercial development is underway.

That's all true, and I would like these products. What I fear though, is whether it will be that much more useful or relaxing as adaptive cruise control (ACC.) You probably don't have ACC in your car. Uptake on it is quite low -- as an individual add-on, usually costing $1,000 to $2,000, only 1-2% of car buyers get it. It's much more commonly purchased as part of a "technology package" for more money, and it's not sure what the driving force behind the purchase is.

Highway and traffic jam autopilot is just a "pleasant" feature, as is ACC. It makes driving a bit more relaxing, once you trust it. But it doesn't change the world, not at all.

I admit to not having this in my car yet. I've sat in the driver's seat of Google's car some number of times, but there I've been on duty to watch it carefully. I got special driver training to assure I had the skills to deal with problem situations. It's very interesting, but not relaxing. Some folks who have commuted long term in such cars have reported it to be relaxing.

A Step to greater things?

If highway autopilot is just a luxury feature, and doesn't change the world, is it a stepping stone to something that does? From a standpoint of marketing, and customer and public reaction, it is. From a technical standpoint, I am not so sure.

Topic: 

Robocar Parking

In my earlier article on robocar challenges I gave very brief coverage to the issue of parking. Challenged on that, I thought it was time to expand.

The world "parking" means many things, and the many classes of parking problems have varying difficulties.

Topic: 

Detroit Auto Show and more news

Robocar news continues after CES with announcements from the Detroit Auto Show (and a tiny amount from the TRB meeting.)

Google doesn't talk a lot about their car, so address by Chris Urmson at the Detroit Auto Show generated a lot of press. Notable statements from Chris included:

Topic: 

Day 3 of CES -- BMW and robots

Day 3 at CES started with a visit to BMW's demo. They were mostly test driving new cars like the i3 and M series cars, but for a demo, they made the i3 deliver itself along a planned corridor. It was a mostly stock i3 electric car with ultrasonic sensors -- and the traffic jam assist disabled. When one test driver dropped off the car, they scanned it, and then a BMW staffer at the other end of a walled course used a watch interface to summon that car.

CES Day 2 Gallery and notes

After a short Day 1 at CES a more full day was full of the usual equipment -- cameras, TVs, audio and the like and visits to several car booths.

I've expanded my gallery of notable things with captions with cars and other technology.

CES Day 1 -- Mercedes concept

A reasonable volume of robocar related stuff here at CES. I just had a few hours today, and went to see the much touted Mercedes F015 "Luxury in Motion." This is a concept and not a planned vehicle, but it draws together a variety of ideas -- most of which we've seen before -- with some new explorations.

Topic: 

Robocars driving when the map is wrong

Yesterday's note on Here's maps brought up the question of the wisdom of map-based driving. While I addressed this a bit earlier let me add a bit more detail.

Topic: 

Cars in the UK, China, LA, CES and Here : Robocar News Update

I see new articles on robocars in the press every day now, though most don't say a lot new. Here, however, are some of the recent meaningful stories from the last month or two while I've been on the road. There are other sites, like the LinkedIn self-driving car group and others, if you want to see all the stories.

Topic: 

Uber's legal battles and robocars

Uber is spreading fast, and running into protests from the industries it threatens, and in many places, the law has responded and banned, fined or restricted the service. I'm curious what its battles might teach us about the future battles of robocars.

Taxi service has a history of very heavy regulation, including government control of fares, and quota/monopolies on the number of cabs. Often these regulations apply mostly to "official taxis" which are the only vehicles allowed to pick up somebody hailing a cab on the street, but they can also apply to "car services" which you phone for a pick-up. In addition, there's lots of regulation at airports, including requirements to pay extra fees or get a special licence to pick people up, or even drop them off at the airport.

Why we have Taxi regulation and monopolies

The heavy regulation had a few justifications:

  • When hailing a cab, you can't do competitive shopping very easily. You take the first cab to come along. As such there is not a traditional market.
  • Cab oversupply can cause congestion
  • Cab oversupply can drive the cost of a taxi so low the drivers don't make a living wage.
  • We want to assure public safety for the passengers, and driving safety for the drivers.
  • A means, in some places, to raise tax revenue, especially taxing tourists.

Most of these needs are eliminated when you summon from an app on your phone. You can choose from several competing companies, and even among their drivers, with no market failure. Cabs don't cruise looking for fares so they won't cause much congestion. Drivers and companies can have reputations and safety records that you can look up, as well as safety certifications. The only remaining public interest is the question of a living wage.

Taxi regulations sometimes get stranger. In New York (the world's #1 taxi city) you must have one of the 12,000 "medallions" to operate a taxi. These medallions over time grew to cost well north of $1 million each, and were owned by cab companies and rich investors. Ordinary cabbies just rented the medallions by the hour. To avoid this, San Francisco made rules insisting a large fraction of the cabs be owned by their drivers, and that no contractual relationship could exist between the driver and any taxi company.

This created the situation which led to Uber. In San Francisco, the "no contract" rule meant if you phoned a dispatcher for a cab, they had no legal power to make it happen. They could just pass along your desire to the cabbie. If the driver saw somebody else with their arm up on the way to get you, well, a bird in the hand is worth two in the bush, and 50% of the time you called for a cab, nobody showed up!

Uber came into that situation using limos, and if you summoned one you were sure to get one, even if it was more expensive than a cab. Today, that's only part of the value around the world but crazy regulations prompted its birth.

The legal battles (mostly for Uber)

I'm going to call all these services (Uber, Lyft, Sidecar and to some extent Hail-O) "Online Ride" services.

Pages

Subscribe to RSS - Robocars