Betterplace dies -- how do you make an electric robotic taxi fleet?

It seems that Better place has gone to... a better place to put it ironically. I'm not greatly surprised, I expressed my skepticism last year.

But I do believe in the idea of the self-driving electric taxi as the best answer for our future urban transportation. So how do you make it happen?

Automating big-event parking

There are a growing number of apps designed to help people find parking, and even reserve and pay for parking in advance. Some know the state of lots. These apps are good for the user but also can produce a public good by reducing the number of people circling looking for parking. Studies suggest in certain circumstances a large fraction of the cars on the road are doing that.

This weekend, I attended the Maker Faire. I've been to almost every Make Faire, including the first, and now it's grown to be far too successful -- you can hardly walk down the aisles at the busy times. They need more space and a way to put more of it outside so thin out the crowds. Still, it is one of those places that makes you feel very clearly you are in the 21st century.

Early on Maker Faire realized it had a parking problem. The lot at the fairgrounds fills up now even before the event opens, and they manage various satellite lots and run shuttle buses to them.

This year they tried something interesting, a twitter feed with parking updates. They tweeted when lots filled up or re-opened, and suggested where to go. They took some limited feedback about lack of shuttles. I think that it by and large worked and reduced traffic around the event.

However, my judgment is that they were not entirely honest in their tweets. This year, and in prior years, they strongly encouraged people to go to one of the most remote lots, regularly telling people it was the fastest route to the event. This was not true. I don't want to ascribe any particular malice here, but there is a suspicion that there is a temptation to make reports in the interest of the event rather than the user. This does have positives, in that cars diverted from near the event reduce traffic which makes the shuttle buses run much faster, but if you give wrong information (deliberately or by accident) this means people stop trusting it and you get the traffic back as more people ignore it.

For example, we stopped at a remote lot, and saw a very long shuttle line. We drove on to a closer lot (also reported as having spaces, but not reported as clearly a better choice) to find lots of spaces, no shuttle line, frequent shuttles and also a walk that was only slightly longer than the shuttle trip.

We need a security standard for USB and other plug-in devices

Studies have shown that if you leave USB sticks on the ground outside an office building, 60% of them will get picked up and plugged into a computer in the building. If you put the company logo on the sticks, closer to 90% of them will get picked up and plugged in.

New surveys with growing acceptance levels

Some interesting robocar surveys are out.

Today, a survey conducted by Cisco showed very high numbers of people saying, "yes, they would ride in a robocar." 57% said yes globally, with 60% in the USA and an incredible 95% in Brazil. (Perhaps it is the trully horrible traffic in the big cities of Brazil which drives this number.) A bit more surprising was the 28% number for Japan.

Topic: 

Radio show on Robocars, Monday the 13th at 7pm PDT

I will be a guest on Monday the 13th (correction -- I originaly said the 14th) on a the "City Visions" program, produced by one of San Francisco's NPR affiliates, KALW. The show runs at 7pm, and you can listen live and phone in (415-841-4134), or listen to the podcast later. Details are on the page about the show.

Other guests include Bryant Walker Smith of Stanford, Martin Sierhuis of the Nissan robocar lab and Bernard Soriano from the California DMV. Should be a good panel.

Moonshots, laws, Tesla and other recent robocar news

Here's a roundup of various recent news items on robocars. There are now a few locations, such as DriverlessCarHQ and the LinkedIn self-driving car group which feature very extensive listing of news items related to robocars. Robocars are now getting popular enough that there are articles every day, but only a few of them contain actual real news for readers of this site or others up on the technology.

Topic: 

ESticks -- a standardized quick-swap battery proposal

You've probably noticed that with many of our portable devices, especially phones and tablets, a large fraction of the size and weight are the battery. Battery technology keeps improving, and costs go down, and there are dreams of fancy new chemistries and even ultracapacitors, but this has become a dominant issue.

Every device seems to have a different battery. Industrial designers work very hard on the design of their devices, and they don't want to be constrained by having to standardize the battery space. In many devices, they are even giving up the replaceable battery in the interests of good design. The existing standard battery sizes, such as the AA, AAA and even the AAAA and other less common sizes are just not suitable for a lot of our devices, and while cylindrical form factors make the most sense for many cell designs they don't fit well in the design of small devices.

So what's holding back a new generation of standardization in batteries? Is it the factors named above, the fact that tech is changing rapidly, or something else?

I would propose a small, thin modular battery that I would call the EStick, for energy stick. The smaller EStick sizes would be thin enough for cell phones. The goal would be to have more than one b-stick, or at least more than one battery in a typical device. Because of the packaging and connections, that would mean a modest reduction in battery capacity -- normally a horrible idea -- but some of the advantages might make it worth it.

Quick swap

There are several reasons to have multiple sticks or batteries in a device. In particular, you want the ability to quickly and easily swap at least one stick while the device is still operating, though it might switch to a lower power mode during the swap. The stick slot would have a spring loaded snap, as is common in many devices like cameras, though there may be desire for a door in addition.

Swapping presents the issue that not all the cells are at the same charge level and voltage. This is generally a bad thing, but modern voltage control electronics has reached the level where this should be possible with smaller and smaller electronics. It is possible with some devices to simply use one stick at a time, as long as that provides enough current. This uses up the battery lifetime faster, and means less capacity, but is simpler.

The quick hot swap offers the potential for indefinite battery life. In particular, it means that very small devices, such as wearable computers (watches, glasses and the like) could run a long time. They might run only 3-4 hours on a single stick, but a user could keep a supply of sticks in a pocket or bag to get arbitrary lifetime. Tiny devices that nobody would ever use because "that would only last 2 hours" could become practical.

While 2 or more sticks would be best for swap, a single stick and an internal battery or capacitor, combined with a sleep mode that can survive for 20-30 seconds without a battery could be OK.

Anatomy of the first robocar accidents

I have prepared a large new Robocar article. This one covers just what will happen when the first robocars are involved in accidents out on public streets, possibly injuring people. While everybody is working to minimize this, perfection is neither possible nor the right goal, so it will eventually happen. As such, when I see public discussion of robocars and press articles, people are always very curious about accidents, liability, insurance and to what extent these issues are blockers on the technology.

So please consider:

Topic: 

Oh Hugo Awards, where have you gone?

I follow the Hugo awards closely, and 20 years ago published the 1993 Hugo and Nebula Anthology which was probably the largest anthology of currently released fiction ever published at the time.

The Hugo awards are voted by around 1,000 fans who attend the World SF Convention, so they have their biases, but over time almost all the greats have been recognized. In addition, until the year 2000, in the best novel Hugo, considered the most important, the winner was always science fiction, not fantasy even though both and more were eligible. That shifted, and from 2001 to 2012, there have been 6 Fantasy winners, one Alternate History, and 5+1 SF. (2010 featured a tie between bad-science SF in the Windup Girl and genre-bending political science fiction in The City & The City.)

That's not the only change to concern me. A few times my own pick for the best has not even been nominated. While that obviously shows a shift between my taste and the rest of the fans, I think I can point to reasons why it's not just that.

The 2013 nominees I find not particularly inspiring. And to me, that's not a good sign. I believe that the Hugo award winning novel should say to history, "This is an example of the best that our era could produce." If it's not such an example, I think "No Award" should win. (No Award is a candidate on each ballot, but it never comes remotely close to winning, and hasn't ever for novels. In the 70s, it deservedly won a few times for movies. SF movies in the mid and early 70s were largely dreck.)

What is great SF? I've written on it before, but here's an improvement of my definition. Great SF should change how you see the future/science/technology. Indeed, perhaps all great literature should change how you view the thing that is the subject matter of the literature, be it love, suffering, politics or anything else. That's one reason why I have the preference for SF over Fantasy in this award. Fantasy has a much harder time attaining that goal.

I should note that I consider these books below as worth reading. My criticism is around whether they meet the standard for greatness that a Hugo candidate should have.

2312 by Kim Stanley Robinson

This is the best of the bunch, and it does an interesting exploration into the relationship of human and AI, and as in all of Stan's fiction, the environment. His rolling city on Mercury is a wonder. The setup is great but the pace is as glacial as the slowly rolling city and the result is good, but not at the level of greatness I require here.

Topic: 

Oliver Kuttner on Very-Light-Car

Last year, I met Oliver Kuttner, who led the team to win the Progressive X-Prize to build the most efficient and practical car over 100mpg. Oliver's Edison2 team won with the VLC (Very Light Car) and surprised everybody by doing it with a liquid fuel engine. There was a huge expectation that an electric car would win the prize, and in fact the rules had been laid out to almost assure it, granting electric cars an advantage over gasoline that I thought was not appropriate.

A Bitcoin Analogy

Bitcoin is having its first "15 minutes" with the recent bubble and crash, but Bitcoin is pretty hard to understand, so I've produced this analogy to give people a deeper understanding of what's going on.

It begins with a group of folks who take a different view on several attributes of conventional "fiat" money. It's not backed by any physical commodity, just faith in the government and central bank which issues it. In fact, it's really backed by the fact that other people believe it's valuable, and you can trade reliably with them using it. You can't go to the US treasury with your dollars and get very much directly, though you must pay your US tax bill with them. If a "fiat" currency faces trouble, you are depending on the strength of the backing government to do "stuff" to prevent that collapse. Central banks in turn get a lot of control over the currency, and in particular they can print more of it any time they think the market will stomach such printing -- and sometimes even when it can't -- and they can regulate commerce and invade privacy on large transactions. Their ability to set interest rates and print more money is both a bug (that has sometimes caused horrible inflation) and a feature, as that inflation can be brought under control and deflation can be prevented.

The creators of Bitcoin wanted to build a system without many of these flaws of fiat money, without central control, without anybody who could control the currency or print it as they wish. They wanted an anonymous, privacy protecting currency. In addition, they knew an open digital currency would be very efficient, with transactions costing effectively nothing -- which is a pretty big deal when you see Visa and Mastercard able to sustain taking 2% of transactions, and banks taking a smaller but still real cut.

With those goals in mind, they considered the fact that even the fiat currencies largely have value because everybody agrees they have value, and the value of the government backing is at the very least, debatable. They suggested that one might make a currency whose only value came from that group consensus and its useful technical features. That's still a very debatable topic, but for now there are enough people willing to support it that the experiment is underway. Most are aware there is considerable risk.

Update: I've grown less fond of this analogy and am working up a superior one, closer to the reality but still easy to understand.

Wordcoin

Bitcoins -- the digital money that has value only because enough people agree it does -- are themselves just very large special numbers. To explain this I am going to lay out an imperfect analogy using words and describe "wordcoin" as it might exist in the pre-computer era. The goal is to help the less technical understand some of the mechanisms of a digital crypto-based currency, and thus be better able to join the debate about them.

Tags: 

We Robot Robot Law Conference and Robot Block Party

It's National Robotics Week, and various events are going on -- probably some in your area.

Today and Tomorrow I am at the We Robot conference at Stanford, where people are presenting papers puzzling over how robots and the law will interact. Not enough technology folks at this iteration of the conference -- we have a natural aversion to this sometimes -- but because we're building big moving things that could run into people, the law has to be understood.

Topic: 

The Personal Cloud and Data Deposit Box

Last night I gave a short talk at the 3rd "Personal Clouds" meeting in San Francisco, The term "personal clouds" is a bit vague at present, but in part it describes what I had proposed in 2008 as the "data deposit box" -- a means to acheive the various benefits of corporate-hosted cloud applications in computing space owned and controlled by the user. Other people are interpreting the phrase "personal clouds" to mean mechanisms for the user to host, control or monetize their own data, to control their relationships with vendors and others who will use that data, or in the simplest form, some people are using it to refer to personal resources hosted in the cloud, such as cloud disk drive services like Dropbox.

I continue to focus on the vision of providing the advantages of cloud applications closer to the user, bringing the code to the data (as was the case in the PC era) rather than bringing the data to the code (as is now the norm in cloud applications.)

Consider the many advantages of cloud applications for the developer:

  • You write and maintain your code on machines you build, configure and maintain.
    • That means none of the immense support headaches of trying to write software to run on mulitple OSs, with many versions and thousands of variations. (Instead you do have to deal with all the browsers but that's easier.)
    • It also means you control the uptime and speed
    • Users are never running old versions of your code and facing upgrade problems
    • You can debug, monitor, log and fix all problems with access to the real data
  • You can sell the product as a service, either getting continuing revenue or advertising revenue
  • You can remove features, shut down products
  • You can control how people use the product and even what steps they may take to modify it or add plug-ins or 3rd party mods
  • You can combine data from many users to make compelling applications, particuarly in the social space
  • You can track many aspects of single and multiple user behaviour to customize services and optimize advertising, learning as you go

Some of those are disadvantages for the user of course, who has given up control. And there is one big disadvantage for the provider, namely they have to pay for all the computing resources, and that doesn't scale -- 10x users can mean paying 10x as much for computing, especially if the cloud apps run on top of a lower level cloud cluster which is sold by the minute.

But users see advantages too:

Topic: 

Speaking on Personal Clouds in SF, and Robocars in Phoenix

Two upcoming talks:

Tomorrow (April 4) I will give a very short talk at the meeting of the personal clouds interest group. As far as I know, I was among the first to propose the concept of the personal cloud in my essages on the Data Deposit Box back in 2007, and while my essays are not the reason for it, the idea is gaining some traction now as more and more people think about the consequences of moving everything into the corporate clouds.

The rise of the small and narrow vehicle

Many of the more interesting consequences of a robotic taxi "mobility on demand" service is the ability to open up all sorts of new areas of car design. When you are just summoning a vehicle for one trip, you can be sent a vehicle that is well matched to that trip. Today we almost all drive in 5 passenger sedans or larger, whether we are alone, with a single passenger or in a group. Many always travel in an SUV or Minivan on trips that have no need of that.

Topic: 

V2V and connected car part 3: Broadcast data

Earlier in part one I examined why it's hard to make a networked technology based on random encounters. In part two I explored how V2V might be better achieved by doing things phone-to-phone.

For this third part of the series on connected cars and V2V I want to look at the potential for broadcast data and other wide area networking.

Tags: 

Solving V2V Part 2: Make it Phone to Phone

Last week, I began in part 1 by examining the difficulty of creating a new network system in cars when you can only network with people you randomly encounter on the road. I contend that nobody has had success in making a new networked technology when faced with this hurdle.

This has been compounded by the fact that the radio spectrum at 5.9ghz which was intended for use in short range communications (DSRC) from cars is going to be instead released as unlicenced spectrum, like the WiFi bands. I think this is a very good thing for the world, since unlicenced spectrum has generated an unprecedented radio revolution and been hugely beneficial for everybody.

But surprisingly it might be something good for car communications too. The people in the ITS community certainly don't think so. They're shocked, and see this as a massive setback. They've invested huge amounts of efforts and careers into the DSRC and V2V concepts, and see it all as being taken away or seriously impeded. But here's why it might be the best thing to ever happen to V2V.

The innovation in mobile devices and wireless protocols of the last 1-2 decades is a shining example to all technology. Compare today's mobile handsets with 10 years ago, when the Treo was just starting to make people think about smartphones. (Go back a couple more years and there weren't any smartphones at all.) Every year there are huge strides in hardware and software, and as a result, people are happily throwing away perfectly working phones every 2 years (or less) to get the latest, even without subsidies. Compare that to the electronics in cars. There is little in your car that wasn't planned many years ago, and usually nothing changes over the 15-20 year life of the car. Car vendors are just now toying with the idea of field upgrades and over-the-air upgrades.

Car vendors love to sell you fancy electronics for your central column. They can get thousands of dollars for the packages -- packages that often don't do as much as a $300 phone and get obsolete quickly. But customers have had enough, and are now forcing the vendors to give up on owning that online experience in the car and ceding it to the phone. They're even getting ready to cede their "telematics" (things like OnStar) to customer phones.

I propose this: Move all the connected car (V2V, V2I etc.) goals into the personal mobile device. Forget about the mandate in cars.

The car mandate would have started getting deployed late in this decade. And it would have been another decade before deployment got seriously useful, and another decade until deployment was over 90%. In that period, new developments would have made all the decisions of the 2010s wrong and obsolete. In that same period, personal mobile devices would have gone through a dozen complete generations of new technology. Can there be any debate about which approach would win?

Tags: 

Pages