You are here

Transportation

Flying cars, electogliding and noise

The recently released national noise map makes it strikingly clear just how much air travel contributes to the noise pollution in our lives. In my previous discussion of flying cars I expressed the feeling that the noise of flying cars is one of their greatest challenges.

Electrify Caltrain? Or could robocars do it for less than 1.5 billion?

Caltrain is the commuter rail line of the San Francisco peninsula. It's not particularly good, and California is the land of the car commuter, but a plan was underway to convert it from diesel to electric. This made news this week as the California Republican house members announced they want to put a stop to both this project, and the much larger California High Speed Rail that hopes to open in 2030.

What if the city ran Waze and you had to obey it? Could this cure congestion?

I believe we have the potential to eliminate a major fraction of traffic congestion in the near future, using technology that exists today which will be cheap in the future. The method has been outlined by myself and others in the past, but here I offer an alternate way to explain it which may help crystallize it in people's minds.

Today many people drive almost all the time guided by their smartphone, using navigation apps like Google Maps, Apple Maps or Waze (now owned by Google.) Many have come to drive as though they were a robot under the command of the app, trusting and obeying it at every turn. Tools like these apps are even causing controversy, because in the hunt for the quickest trip, they are often finding creative routes that bypass congested major roads for local streets that used to be lightly used.

Put simply, the answer to traffic congestion might be, "What if you, by law, had to obey your navigation app at rush hour?" To be more specific, what if the cities and towns that own the streets handed out reservations for routes on those streets to you via those apps, and your navigation app directed you down them? And what if the cities made sure there were never more cars put on a piece of road than it had capacity to handle? (The city would not literally run Waze, it would hand out route reservations to it, and Waze would still do the UI and be a private company.)

The value is huge. Estimates suggest congestion costs around 160 billion dollars per year in the USA, including 3 billion gallons of fuel and 42 hours of time for every driver. Roughly quadruple that for the world.

Road metering actually works

This approach would exploit one principle in road management that's been most effective in reducing congestion, namely road metering. The majority of traffic congestion is caused, no surprise, by excess traffic -- more cars trying to use a stretch of road than it has the capacity to handle. There are other things that cause congestion -- accidents, gridlock and irrational driver behaviour, but even these only cause traffic jams when the road is near or over capacity.

Today, in many cities, highway metering is keeping the highways flowing far better than they used to. When highways stall, the metering lights stop cars from entering the freeway as fast as they want. You get frustrated waiting at the metering light but the reward is you eventually get on a freeway that's not as badly overloaded.

Another type of metering is called congestion pricing. Pioneered in Singapore, these systems place a toll on driving in the most congested areas, typically the downtown cores at rush hour. They are also used in London, Milan, Stockholm and some smaller towns, but have never caught on in many other areas for political reasons. Congestion charging can easily be viewed as allocating the roads to the rich when they were paid for by everybody's taxes.

A third successful metering system is the High-occupancy toll lane. HOT lanes take carpool lanes that are being underutilized, and let drivers pay a market-based price to use them solo. The price is set to bring in just enough solo drivers to avoid wasting the spare capacity of the lane without overloading it. Taking those solo drivers out of the other lanes improves their flow as well. While not every city will admit it, carpool lanes themselves have not been a success. 90% of the carpools in them are families or others who would have carpooled anyway. The 10% "induced" carpools are great, but if the carpool lane only runs at 50% capacity, it ends up causing more congestion than it saves. HOT is a metering system that fixes that problem.

Carpool apps are on the rise, let's make transfer points and roads to help them

The success of carpool apps

The cell phone ride hail apps like Uber and Lyft are now reporting great success with actual ride-sharing, under the names UberPool, LyftLines and Lyft Carpool. In addition, a whole new raft of apps to enable semi-planned and planned carpooling are out making changes.

Uber, Lyft and crew should replace public transit at night

I have a big article forthcoming on the future of public transit. I believe that with the robocar (and van) it moves from being scheduled, route-based mass transit to on-demand, ad-hoc route medium and small vehicle transit. That's in part because of the disturbingly poor economics of current mass transit, especially in the USA. We can do much better.

The Electric Car may be entering its "cell phone" period

I've been electric car shopping, but one thing has stood out as a big concern. Many electric cars are depreciating fast, and it may get even faster. I think part of this is due to the fact that electric cars are a bit more like electronics devices than they are cars. Electric cars will see major innovation in the next few years, as well as a decline in their price/performance of their batteries. This spells doom for their value. It's akin to cell phones -- your 2 year old cell phone still functions perfectly, but you dispose of it for a new one because of the pace of innovation.

Portugal's Velocidade Controlada -- speed control traffic signals

Recently I did a road trip through Portugal. I always enjoy finding something new that they are doing in a country which has not yet spread to the rest of the world.

Along a number of Portuguese roads, you will see a sign marked "velocidade controlada" -- speed control -- and then a modest distance down the road will be a traffic light in the middle of nowhere. There is no cross street. This is an interesting alternative to the speed bump or other "traffic calming" systems.

Matternet launches drone delivery platform

I often speak about deliverbots -- the potential for ground based delivery robots. There is also excitement about drone (UAV/quadcopter) based delivery. We've seen many proposed projects, including Amazon prime Air and much debate.

Uber price in LA approaches robocar cheap

I was recently considering the price of UberX in Los Angeles. It's gotten disturbingly low:

Flag drop: $0 18 cents/minute 90 cents/mile

This is not a very good deal for the driver. After Uber's 20% cut, that's 72 cents/mile. According to AAA, a typical car costs about 60 cents/mile to operate, not including parking. (Some cars are a bit cheaper, including the Prius favoured by UberX drivers.) In any event, the UberX driver is not making much money on their car.

Multi car EV chargers

Electric Vehicles are moving up, at least here in California, and it's gotten to the point that EV drivers are finding all the charging stations where they want to go already in use, forcing them to travel well outside their way, or to panic. Sometimes not charging is not an option. Sometimes the car taking the spot is already mostly charged or doesn't need the charge much, but the owner has not come back.

Here in Silicon Valley, there is a problem that the bulk of the EVs have 60 to 80 miles of range -- OK for wandering around the valley, but not quite enough for a trip to San Francisco and back, at least not a comfortable one. And we do like to go to San Francisco. The natives up there don't really need the chargers in a typical day, but the visitors do. In general, unless you are certain you are going to get a charger, you won't want to go in a typical EV. Sure, a Tesla has no problem, but a Tesla has a ridiculous amount of battery in it. You spend $40,000 on the battery pack in the Tesla, but use the second half of its capacity extremely rarely -- it's not cost effective outside the luxury market, at least at today's prices (and also because of the weight.)

Charging stations are somewhat expensive. Even home stations cost from $400 to $800 because they must now include EVSE protocol equipment. This does a digital negotiation between the car and the plug on how much power is available and when to send it. The car must not draw more current than the circuit can handle, and you want the lines to not be live until the connection is solid. For now that's expensive (presumably because of the high current switching gear.) Public charging stations also need a way to doing billing and access control.

Another limit on public charging stations, however, is the size of the electrical service. A typical car wants 30 amps, or up to 50 if you can get it. Put in more than a few of those and you're talking an upgrade to the building's electrical service in many cases.

I propose a public charging pole which has 4 or even 8 cords on it. This pole would be placed at the intersection of 4 parking spots in a parking lot. (That's not very usual, more often they end up placed against a wall, with only 2 parking spots in range, because that's where the power is.) The station, however, may not have enough power to charge all the cables at once.

Uber starts to improve their surge pricing public relations

Uber's gotten a lot of bad press over its surge pricing system. As prices soared during Storm Sandy and a hostage crisis in Sydney, people saw it as price gouging when times are tough.

Uber's legal battles and robocars

Uber is spreading fast, and running into protests from the industries it threatens, and in many places, the law has responded and banned, fined or restricted the service. I'm curious what its battles might teach us about the future battles of robocars.

Taxi service has a history of very heavy regulation, including government control of fares, and quota/monopolies on the number of cabs. Often these regulations apply mostly to "official taxis" which are the only vehicles allowed to pick up somebody hailing a cab on the street, but they can also apply to "car services" which you phone for a pick-up. In addition, there's lots of regulation at airports, including requirements to pay extra fees or get a special licence to pick people up, or even drop them off at the airport.

Why we have Taxi regulation and monopolies

The heavy regulation had a few justifications:

  • When hailing a cab, you can't do competitive shopping very easily. You take the first cab to come along. As such there is not a traditional market.
  • Cab oversupply can cause congestion
  • Cab oversupply can drive the cost of a taxi so low the drivers don't make a living wage.
  • We want to assure public safety for the passengers, and driving safety for the drivers.
  • A means, in some places, to raise tax revenue, especially taxing tourists.

Most of these needs are eliminated when you summon from an app on your phone. You can choose from several competing companies, and even among their drivers, with no market failure. Cabs don't cruise looking for fares so they won't cause much congestion. Drivers and companies can have reputations and safety records that you can look up, as well as safety certifications. The only remaining public interest is the question of a living wage.

Taxi regulations sometimes get stranger. In New York (the world's #1 taxi city) you must have one of the 12,000 "medallions" to operate a taxi. These medallions over time grew to cost well north of $1 million each, and were owned by cab companies and rich investors. Ordinary cabbies just rented the medallions by the hour. To avoid this, San Francisco made rules insisting a large fraction of the cabs be owned by their drivers, and that no contractual relationship could exist between the driver and any taxi company.

This created the situation which led to Uber. In San Francisco, the "no contract" rule meant if you phoned a dispatcher for a cab, they had no legal power to make it happen. They could just pass along your desire to the cabbie. If the driver saw somebody else with their arm up on the way to get you, well, a bird in the hand is worth two in the bush, and 50% of the time you called for a cab, nobody showed up!

Uber came into that situation using limos, and if you summoned one you were sure to get one, even if it was more expensive than a cab. Today, that's only part of the value around the world but crazy regulations prompted its birth.

The legal battles (mostly for Uber)

I'm going to call all these services (Uber, Lyft, Sidecar and to some extent Hail-O) "Online Ride" services.

Is Carpool cheating the answer?

A recent newspaper column where people complained about carpool cheats got me thinking -- could cheating actually be a solution to some carpool problems?

Virtual window in cruise ship comes to life

Very long-time readers of this blog will remember a proposal I made 10 years ago that cruise ship inside cabins use HDTVs with the outside view. Now a cruise ship is launching with such a system, though bigger than I proposed.

No, we don't want much more Fedex and UPS on Dec 24

A big story this Christmas was a huge surge in the use of rush shipping in the last 2 days before Christmas. Huge numbers of people signed up for Amazon Prime, and other merchants started discounting 2 day and overnight shipping to get those last minute sales. In turn, a lot of stuff didn't get delivered on time, making angry customers and offers of apology discounts from merchants. This was characterized as a "first world problem" by many outside the game, of course.

The RV of the future

Over the years, particularly after Burning Man, I've written posts about how RVs can be improved. This year I did not use an regular RV but rather a pop-up camping trailer. However, I thought it was a good time to summarize a variety of the features I think should be in every RV of the future.

Smart Power

We keep talking about smart power and smart grids but power is expensive and complex when camping, and RVs are a great place for new technologies to develop.

To begin with, an RV power system should integrate the deep cycle house batteries, a special generator/inverter system, smart appliances and even the main truck engine where possible.

Today the best small generators are inverter based. Rather than generating AC directly from an 1800rpm motor and alternator, they have a variable speed engine and produce the AC via an inverter. These are smaller, more efficient, lighter and quieter than older generators, and produce cleaner power. Today they are more expensive, but not more expensive than most RV generators. RV generators are usually sized at 3,600 to 4,000 watts in ordinary RVs -- that size dictated by the spike of starting up the air conditioner compressor when something else, like the microwave is running.

An inverter based generator combined with the RV's battery bank doesn't have to be that large. It can draw power for the surge of starting a motor from the battery. The ability to sustain 2,000 watts is probably enough, with a few other tricks. Indeed, it can provide a lot of power even with the generator off, though the generator should auto-start if the AC is to be used, or the microwave will be used for a long time.

By adding a data network, one can be much more efficient with power. For example, the microwave could just turn off briefly when the thermostat wants to start the AC's compressor, or even the fans. The microwave could also know if it's been told to cook for 30 seconds (no need to run generator) or 10 minutes (might want to start it.) It could also start the generator in advance of cooling need.

If the master computer has access to weather data, it could even decide what future power needs for heating fans and air conditioning will be, and run the generator appropriately. With a GPS database, it could even know the quiet times of the campsite it's in and respect them.

A modern RV should have all-LED lighting. Power use is so low on those that the lights become a blip in power planning. Only the microwave, AC and furnace fan would make a difference. Likewise today's TVs, laptops and media players which all draw very few watts.

A smart power system could even help plugging into shore power, particularly a standard 15a circuit. Such circuits are not enough to start many ACs, or to run the AC with anything else. With surge backup from the battery, an RV could plug into an ordinary plug and act almost like it had a high power connection.

To go further, for group camping, RVs should have the ability to form an ad-hoc power grid. This same ability is already desired in the off-grid world, so it need not be developed just for RVs. RVs able to take all sorts of input power could also eventually get smart power from RV campsites. After negotiation, a campsite might offer 500v DC at 12 amps instead of 115v AC, allowing the largest dual-AC RVs to plug into small wires.

Rideshare in a transit strike

BART, one of the SF Bay Area's transit systems, is on strike today, and people are scrambling for alternatives. The various new car-based transportation companies like Uber, Lyft and Sidecar are all trying to bump their service to help with the demand, but in the future I think there will be a much bigger opportunity for these companies.

Automating big-event parking

There are a growing number of apps designed to help people find parking, and even reserve and pay for parking in advance. Some know the state of lots. These apps are good for the user but also can produce a public good by reducing the number of people circling looking for parking. Studies suggest in certain circumstances a large fraction of the cars on the road are doing that.

This weekend, I attended the Maker Faire. I've been to almost every Make Faire, including the first, and now it's grown to be far too successful -- you can hardly walk down the aisles at the busy times. They need more space and a way to put more of it outside so thin out the crowds. Still, it is one of those places that makes you feel very clearly you are in the 21st century.

Early on Maker Faire realized it had a parking problem. The lot at the fairgrounds fills up now even before the event opens, and they manage various satellite lots and run shuttle buses to them.

This year they tried something interesting, a twitter feed with parking updates. They tweeted when lots filled up or re-opened, and suggested where to go. They took some limited feedback about lack of shuttles. I think that it by and large worked and reduced traffic around the event.

However, my judgment is that they were not entirely honest in their tweets. This year, and in prior years, they strongly encouraged people to go to one of the most remote lots, regularly telling people it was the fastest route to the event. This was not true. I don't want to ascribe any particular malice here, but there is a suspicion that there is a temptation to make reports in the interest of the event rather than the user. This does have positives, in that cars diverted from near the event reduce traffic which makes the shuttle buses run much faster, but if you give wrong information (deliberately or by accident) this means people stop trusting it and you get the traffic back as more people ignore it.

For example, we stopped at a remote lot, and saw a very long shuttle line. We drove on to a closer lot (also reported as having spaces, but not reported as clearly a better choice) to find lots of spaces, no shuttle line, frequent shuttles and also a walk that was only slightly longer than the shuttle trip.

V2V and connected car part 3: Broadcast data

Earlier in part one I examined why it's hard to make a networked technology based on random encounters. In part two I explored how V2V might be better achieved by doing things phone-to-phone.

For this third part of the series on connected cars and V2V I want to look at the potential for broadcast data and other wide area networking.

Tags: 

Solving V2V Part 2: Make it Phone to Phone

Last week, I began in part 1 by examining the difficulty of creating a new network system in cars when you can only network with people you randomly encounter on the road. I contend that nobody has had success in making a new networked technology when faced with this hurdle.

This has been compounded by the fact that the radio spectrum at 5.9ghz which was intended for use in short range communications (DSRC) from cars is going to be instead released as unlicenced spectrum, like the WiFi bands. I think this is a very good thing for the world, since unlicenced spectrum has generated an unprecedented radio revolution and been hugely beneficial for everybody.

But surprisingly it might be something good for car communications too. The people in the ITS community certainly don't think so. They're shocked, and see this as a massive setback. They've invested huge amounts of efforts and careers into the DSRC and V2V concepts, and see it all as being taken away or seriously impeded. But here's why it might be the best thing to ever happen to V2V.

The innovation in mobile devices and wireless protocols of the last 1-2 decades is a shining example to all technology. Compare today's mobile handsets with 10 years ago, when the Treo was just starting to make people think about smartphones. (Go back a couple more years and there weren't any smartphones at all.) Every year there are huge strides in hardware and software, and as a result, people are happily throwing away perfectly working phones every 2 years (or less) to get the latest, even without subsidies. Compare that to the electronics in cars. There is little in your car that wasn't planned many years ago, and usually nothing changes over the 15-20 year life of the car. Car vendors are just now toying with the idea of field upgrades and over-the-air upgrades.

Car vendors love to sell you fancy electronics for your central column. They can get thousands of dollars for the packages -- packages that often don't do as much as a $300 phone and get obsolete quickly. But customers have had enough, and are now forcing the vendors to give up on owning that online experience in the car and ceding it to the phone. They're even getting ready to cede their "telematics" (things like OnStar) to customer phones.

I propose this: Move all the connected car (V2V, V2I etc.) goals into the personal mobile device. Forget about the mandate in cars.

The car mandate would have started getting deployed late in this decade. And it would have been another decade before deployment got seriously useful, and another decade until deployment was over 90%. In that period, new developments would have made all the decisions of the 2010s wrong and obsolete. In that same period, personal mobile devices would have gone through a dozen complete generations of new technology. Can there be any debate about which approach would win?

Tags: 

Pages

Subscribe to RSS - Transportation