You are here


The future of computer-driven cars and deliverbots

Concept robocars at Tokyo Auto Show and more

As expected, there's more news from the Tokyo auto show, which is well known for strange concept cars.

First there is the Toyota Fun Vii


Nissan Pivo 3 concept has valet park, come-get-me features

Nissan has announced a new version of their Pivo concept car. The Pivo 3 here's a story with a video offers 4 wheel steering and automatic parking, including a claimed functionality for automated valet parking. In the AVP case, the car requires a special parking lot, though it is not said what changes are needed. A few years ago the Stanford team demonstrated Junior 3 which could valet park in a lot to which it had a map, and which had no civilian pedestrians.


BMW designer feels robocars over a decade away and the never-driving baby

In contrast to the optimism I usually present here, and last week's article about a self-driving Mercedes just a year away it's worth noting this interview with various BMW folks where they provide a much more cautious timeline of at least a decade. Part of their concern comes from the use of computer vision systems.


2013 Mercedes S class to feature autopilot for stop-and-go

For the first time, a car company has put a date on shipment of a car with self-driving ability.

According to British site Auto Express, Mercedes has revealed that their 2013 S-class will feature self-driving. Not clear if there is an official company press release, though the company has been talking about such features, as have many other companies. Realize that the 2013 model year is just a year away.


ITS vehicle to vehicle demo at ITS World Congress

I'm just back from the "ITS World Congress" an annual meeting of people working on "Intelligent Transportation Systems" which means all sorts of applications of computers and networking to transportation, particularly cars. A whole bunch of stuff gets covered there, including traffic monitoring and management, toll collection, transit operations etc. but what's of interest to robocar enthusiasts is what goes into cars and streets. People started networking cars with systems like OnStar, now known in the generic sense as "telematics" but things have grown since then.

The big effort involves putting digital radios into cars. The radio system, known by names like 802.11p, WAVE and DSRC involves an 802.11 derived protocol in a new dedicated band at 5.9ghz. The goal is a protocol suitable for safety applications, with super-fast connections and reliable data. Once the radios in the car, the car will be able to use it to talk to other cars (known as V2V) or to infrastructure facilities such as traffic lights (known as V2I.) The initial planned figured that the V2I services would give you internet in your car, but the reality is that 4G cellular networks have taken over that part of the value chain.

Coming up with value for V2V is a tricky proposition. Since you can only talk to cars very close to you, it's not a reliable way to talk with any particular car. Relaying through the wide area network is best for that unless you need lots of bandwidth or really low latency. There's not much that needs lots of bandwidth, but safety applications do demand both low latency and a robust system that doesn't depend on infrastructure.

The current approach to safety applications is to have equipped cars transmit status information. Formerly called a "here I am" this is a broadcast of location, direction, speed and signals like brake lights, turn signals etc. If somebody else's car is transmitting that, your car can detect their presence, even if you can't see them. This lets your car detect and warn about things like:

  • The car 2 or 3 in front of you, hidden by the truck in front of you, that has hit the brakes or stalled
  • People in your blind spot, or who are coming up on you really fast when your're about to change lanes
  • Hidden cars coming up when you want to turn left, or want to pass on a rural highway
  • Cars about to run red lights or blow stop signs at an intersection you're about to go through
  • Privacy is a big issue. The boxes change their ID every minute so you can't track a car over a long distance unless you can follow it over every segment, but is that enough? They say a law is needed so the police don't use the speed broadcast to ticket you, but will it stay that way?

It turns out that intersection collisions are a large fraction of crashes, so there's a big win there, if you can do it. The problem is one of critical mass. Installed in just a few cars, such a system is extremely unlikely to provide aid. For things like blindspot detection, existing systems that use cameras or radars are far better because they see all cars, not just those with radios. Even with 10% penetration, there's only a 1% chance any given collision could be prevented with the system, though it's a 10% chance for the people who seek out the system. (Sadly, those who seek out fancy safety systems are probably less likely to be the ones blowing through red lights, and indeed another feature of the system -- getting data from traffic lights -- already can do a lot to stop an equipped car from going through a red light by mistake.)

Google's robocar explained in video

Since getting involved with Google's self-driving-car team, I've had to keep silent about its internals, but for those who are interested in the project, a recent presentation at the intelligent robotics conference in San Francisco is now up on youtube. The talk is by Sebastian Thrun (overall project leader) and Chris Urmson, lead developer. Sebastian led the Stanley and Junior teams in the Darpa Grand Challenge and Chris led CMU teams, including BOSS which won the urban challenge.


Oxford and BAE make "Wildcat" robocar

The list of robocar teams grows again with a new project from Oxford university, led by Paul Newman. Nissan is also involved, though the base vehicle is a Bowler Wildcat off-road vehicle.


Bigdog becomes Alphadog -- walking robots step closer to the real world

Earlier I wrote about the transportation potential of walking robots-of-burden like BigDog. While these robots are not for the long haul, a whole range of options are opened up by a wheeled vehicle that can get to where the road ends, and then lower legs to walk along rough terrain, up stairs and up hills.

Boston Dynamics has gone even further with their latest model, AlphaDog


BMW Robocar, Audi and more

Some Robocar updates, since with Burning Man and Singularity U my posting volume has been down:


Interesting robocar test in China

A report from China Daily details a successful 286km trip by a vehicle from the National University of Defense Technology.


Robocar legality in Nevada, Germany and more news

A wrapup of robocar news from the past couple of weeks:

Nevada governor Brian Sandoval rides in Google Car

After Nevada's recent legislation directing their DOT to explore legal operations for robocars in the state, the governor "took the wheel" of a Google car. Very positive impressions from the governor and DMV head.


A solar panel on a robocar

I often see people say they would like to see solar panels on electric cars, inspired by the solar-electric cars in the challenge races, and by the idea that the solar panel will provide some recharging for the car while it is running and without need to plug it in.

It turns out this isn't a tremendously good idea for a variety of reasons:

Car users frustrated with their tech

The latest JD Power survey on car satisfaction has a very new complaint that has now the second most annoying item to new car owners namely problems with the voice recognition system in their hands-free interface. This is not too surprising, since voice recognition, especially in cars, is often dreadful. It also reveals that most new tech has lots of UI problems -- not every product is the iPod, lauded from the start for its UI.

Robocar projects, laws and other news

An update on the backlog of robocar related news caused by my recent travel and projects:

Nevada law

Many people have noticed the new law recently passed in Nevada which directs the Dept. of Transportation to create guidelines for the introduction of self-driving cars on Nevada roads. Here is the text of the law. Because Google, whom I consult for on robocars, helped instigate this law, I will refrain from comment, other than to repeat what I've said before: I predict that most transportation innovation will take place in robocars because they will be built from the ground up and bought by early adopters. The government need merely get out of the way and do very basic facilitation. This is very different from things like PRT and new transit lines, which require the government's active participation and funding.

You'll find lots of commentary on the story in major news media.

Volkswagen announces simple self-driving car


Dodge leading human resistance to robocars

Dodge has released a few interesting commercials for its Charger muscle car, somewhat prematurely pushing it as the antithesis of a robocar.


Google Robocars at TED, Shanghai bubble cars, Robot Week, lives saved

Here's a few Robocar updates.

First of all, the TED talk given by Sebastian Thrun, leader of the Google self-driving car team (disclaimer: they are a consulting client) is up on the TED web site. This is one of the short TED talks, so he does not get to go into a lot of depth, but notable is one of the first public showings of video of the Google car in action on ordinary city streets. (The first was at PodCarCity, but video was not made available on the web.)


Google car demo, Toyota Vision and mind-driving

A few recent Robocar updates for you:

Google took its car down to the TED conference in Long Beach and did a few demo drives for people. In this mashable story you can catch some videos, inside and outside, of the car driving around a cone-based course on top of a parking lot near TED.


Blind man drives, sort of, with a robocar

A release from the National Federation for the Blind reports a blind person driving and avoiding obstacles on the Daytona speedway. They used a car from the TORC team at Virginia Tech, one of the competitors in the Darpa Grand Challenges. In effect, the blind driver replaced the "drive by wire" component of a robocar with a more intelligent and thinking human also able to feel acceleration and make some judgements.


Working on Robocars at Google

As readers of this blog surely know, for several years I have been designing, writing and forecasting about the technology of self-driving "robocars" in the coming years. I'm pleased to announce that I have recently become a consultant to the robot car team working at Google.

Of course all that work will be done under NDA, and so until such time as Google makes more public announcements, I won't be writing about what they or I are doing. I am very impressed by the team and their accomplishments, and to learn more I will point you to my blog post about their announcement and the article I added to my web site shortly after that announcement. It also means I probably won't blog in any detail about certain areas of technology, in some cases not commenting on the work of other teams because of conflict of interest. However, as much as I enjoy writing and reporting on this technology, I would rather be building it.

My philosophical message about Robocars I have been saying for years, but it should be clear that I am simply consulting on the project, not setting its policies or acting as a spokesman.

My primary interest at Google is robocars, but many of you also know my long history in online civil rights and privacy, an area in which Google is often involved in both positive and negative ways. Indeed, while I was chairman of the EFF I felt there could be a conflict in working for a company which the EFF frequently has to either praise or criticise. I will be recusing myself from any EFF board decisions about Google, naturally.

Comparing electricity to a gallon of gasoline

The "burning" question for electric cars is how to compare them with gasoline. Last month I wrote about how wrong the EPA's 99mpg number for the Nissan Leaf was, and I gave the 37mpg number you get from the Dept. of Energy's methodology. More research shows the question is complex and messy.

So messy that the best solution is for electric cars to publish their efficiency in electric terms, which means a number like "watt-hours/mile." The EPA measured the Leaf as about 330 watt-hours/mile (or .33 kwh/mile if you prefer.) For those who really prefer an mpg type number, so that higher is better, you would do miles/kwh.

Then you would get local power companies to publish local "kwh to gallon of gasoline" figures for the particular mix of power plants in that area. This also is not very easy, but it removes the local variation. The DoE or EPA could also come up with a national average kwh/gallon number, and car vendors could use that if they wanted, but frankly that national number is poor enough that most would not want to use it in the above-average states like California. In addition, the number in other countries is much better than in the USA.

The local mix varies a lot. Nationally it's about 50% coal, 20% gas, 20% nuclear and 10% hydro with a smattering of other renewables. In some places, like Utah, New Mexico and many midwestern areas, it is 90% or more coal (which is bad.) In California, there is almost no coal -- it's mostly natural gas, with some nuclear, particularly in the south, and some hydro. In the Pacific Northwest, there is a dominance by hydro and electricity has far fewer emissions. (In TX, IL and NY, you can choose greener electricity providers which seems an obvious choice for the electric-car buyer.)

Understanding the local mix is a start, but there is more complexity. Let's look at some of the different methods, staring with an executive summary for the 330 wh/mile Nissan Leaf and the national average grid:

  • Theoretical perfect conversion (EPA method): 99 mpg-e(perfect)
  • Heat energy formula (DoE national average): 37 mpg-e(heat)
  • Cost of electricity vs. gasoline (untaxed): 75 mpg-e($)
  • Pollution, notably PM2.5 particulates: Hard to calculate, could be very poor. Hydrocarbons and CO: very good.
  • Greenhouse Gas emissions, g CO2 equivalent: 60 mpg-e(CO2)


Subscribe to RSS - Robocars