Robocar Prize in India, New Vislab car

Topic: 

I read a lot of feeds, and there are now scores of stories about robocars every week. Almost every day a new publication gives a summary of things. Here, I want to focus on things that are truly new, rather than being comprehensive.

Mahindra "Rise" Prize

The large Indian company Mahindra has announced a $700,000 Rise prize for robocar development for India's rather special driving challenges. Prizes have been a tremendous boost to robocar development and DARPA's contests changed the landscape entirely. Yet after the urban challenge, DARPA declared their work was done and stopped, and in spite of various efforts to build a different prize at the X-Prize foundation, the right prize has never been clear. China has annual prizes and has done so for several years, but they get little coverage outside of China.

An Indian prize has merit because driving in India is very much different, and vastly more chaotic than most of the west. As such, western and east Asian companies are unlikely to spend a lot of effort trying to solve the special Indian problems first. It makes sense to spur Indian development, and of course there is no shortage of technical skill in India.

Many people imagine that India's roads are so chaotic that a computer could never drive on them. There is great chaos, but it's important to note that it's slow chaos, not fast chaos. Being slow makes it much easier to be safe. Safety is the hard part of the problem. Figuring out just what is happening, playing subtle games of chicken -- these are not trivial, but they can be solved, if the law allows it.

I say if the law allows it because Indians often pay little heed to the traffic law. A vehicle programmed to strictly obey the law will probably fail there without major changes. But the law might be rewritten to allow a robot to drive the way humans drive there, and be on an open footing. The main challenge is games of chicken. In the end, a robot will yield in a game of chicken and humans will know that and exploit it. If this makes it impossible for the robot to advance, it might be programmed to "yield without injury" in a game of chicken. This would mean randomly claiming territory from time to time, and if somebody else refuses to yield, letting them hit you, gently. The robot would use its knowledge of physics to keep the impact low enough speed to cause minor fender damage but not harm people. If at fault, the maker of the robot would have to pay, but this price in damage to property may be worthwhile if it makes the technology workable.

The reason it would make things workable is that once drivers understood that, at random, the robot will not yield (especially if it has the right-of-way) and you're going to hit it. Yes, they might pay for the damage (if you had the right of way) but frankly that's a big pain for most people to deal with. People might attempt insurance fraud and deliberately be hit, but they will be recorded in 3D, so they had better be sure they do it right, and don't do it more than once.

Of course, the cars will have to yield to pedestrians, cylists and in India, cows. But so does everybody else. And if you just jump in front of a car to make it hit the brakes, it will be recording video of you, so smile.

New Vislab Car

I've written before about Vislab at the University of Parma. Vislab are champions of using computer vision to solve the driving problem, though their current vehicles also make use of LIDAR, and in fact they generally agree with the trade-offs I describe in my article contrasting LIDAR and cameras.

They have a new vehicle called DEEVA which features 20 cameras and 4 lasers. Like so many "not Google" projects, they have made a focus on embedding the sensors to make them not stand out from the vehicle. This continues to surprise me, because I have very high confidence that the first customers of robocars will be very keen that they not look like ordinary cars. They will want the car to stand out and tell everybody, "Hey, look, I have a robocar!" The shape of the Prius helped its sales, as well as its drag coefficient.

This is not to say there aren't people who, when asked, will say they don't want the car to look too strange, or who say, looking at various sensor-adorned cars, that these are clearly just lab efforts and not something coming soon to roads near you. But the real answer is neither ugly sensors nor hidden sensors, but distinctive sensors with a design flair.

More interesting is what they can do with all those cameras, and what performance levels they can reach.

I will also note that car uses QNX as its OS. QNX was created by friend I went to school with in Waterloo, and they're now a unit of RIM/Blackberry (also created by classmates of mine.) Go UW!

Comments

Watching the Indian traffic video you linked reminded me of some intersection simulation videos I've seen. And indeed, this one: https://www.youtube.com/watch?v=4pbAI40dK0A has that same clip in it. The utexas folks seem to think that people will be too freaked out to turn this technology loose but clearly the steel traffic nerves of Indians are ready now. Also I would point out that once a critical mass of robocars has penetrated the market, they can let each other in politely. And finally, a robocar need not be as aggressive as a human driver since the human is comfortably watching cricket and is in less of a frustrated hurry.

Add new comment