The super simple and cheap car of the future
Submitted by brad on Fri, 2016-06-17 14:00With Mobility on Demand, you don't buy a car, you buy rides. That's certainly Uber's plan, and is a plan that makes sense for Google, Apple and other no-car companies. But even Daimler, with Car2Go/Car2Come, BMW with DriveNow and GM with Lyft plan to sell you a ride rather than a car, because it's the more lucrative thing to do.
So what does that car of the future look like? There is no one answer, because in this world, the car that is sent to pick you up is tailored to your trip. The more people traveling, the bigger the car is. If your trip does not involve a highway, it may not be a car capable of the highway. If your trip is up to a mountain cabin, it's more like an SUV, but you never use an SUV to go get a bottle of milk the way we do today. If it's for a cruise to the beach on a sunny day, the roof may have been removed at the depot. If it's for an overnight trip to a country home, it may be just beds.
I outlined many of these changes in this article on design changes in cars but today I will focus on the incredibly cheap and simple design of what should become the most common vehicle made, namely the car designed for a short urban trip by one person. That's 80% of trips and around 45% of miles, so this should be a large fraction of the fleet. I predict a lot of these cars will be made every year -- more than all the cars made today, even though they are used as taxis and shared among many passengers.
What does it look like?
Small
A car for 1-2 people will be small. It will probably be around 1.5m wide, narrow enough that you can fit two in a lane, and have it park very efficiently when it has to wait. If it's for just one person, it won't be very long either. For two people, there will be a "face to face" configuration which is longer and an "tandem" configuration which is a bit shorter. The 2 person vehicles aren't a lot bigger or heavier than the one person, so they might be the most common cars, since you can serve a solo rider fairly efficiently with one, even if not perfectly efficient.
A car that is so narrow can't corner very fast. A wide stance is much more stable. There are a few solutions to that, including combinations of these:
- The wheels bank independently, allowing the vehicle to lean like a motorcycle when in corners. This is the best solution, but it costs some money.
- Alternately it's a two wheeler, which is also able to lean, but has other tricks like the LIT Motors C-1 to stay upright.
- It's electric, and has all the batteries in the floor, giving it a very low center of gravity. (One extreme example of this is the Tango, which uses lead batteries deliberately to give it that stability.)
- It never goes on fast roads, so it never needs to corner very fast, and its precision robot driving assures it never corners so fast as to become unstable, and it plans its route accordingly.

Not super aerodynamic
The car already has a big win when it comes to aerodynamic drag by only being half-width. The non-highway version probably gives back a bit of that because you don't need to worry as much about that if you are not going fast. Energy lost to drag goes up with the square of velocity. So a 30mph car has 1/4 the drag of a 60mph car, and 1/8th the drag of a similar car of full width. The highway car needs to be shaped as close to a "teardrop" as you can, but the city car can get away with being a bit taller for more comfortable seating and entry/exit.








People with some level of identity (an address, a job) have ways to be accountable. If the damage rises to the level where refusing to fix it is a crime at some level, fear of the justice system might work, but it's unlikely the police are going to knock on somebody's door for throwing up in a car.
These networks are having their effect on robocar development. They are allowing
significant progress in the use of vision systems for robotics and driving, making
those progress much faster than expected. 2 years ago, I declared that the time when
vision systems would be good enough to build a safe robocar without lidar was still
fairly far away. That day has not yet arrived, but it is definitely closer, and it's
much harder to say it won't be soon. At the same time, LIDAR and other sensors are
improving and dropping in price. Quanergy (to whom I am an advisor) plans to ship $250
8-line LIDARS this year, and $100 high resolution LIDARS in the next couple of years.