NHTSA Regulations part 4: Crashes, Training, Certification, State Law, Operation, Validation and Autopilots

After my initial reactions and Overall Analysis here is a point by point consideration of second set of elements from NHTSA’s 15 point certification list for robocars. See my series for other articles or the first half of the list.


In this section, the remind vendors they still need to meet the same standards as regular cars do. We are not ready to start removing heavy passive safety systems just because the vehicles get in fewer crashes. In the future we might want to change that, as those systems can be 1/3 of the weight of a vehicle.

They also note that different seating configurations (like rear facing seats) need to protect as well. It’s already the case that rear facing seats will likely be better in forward collisions. Face-to-face seating may present some challenges in this environment, as it is less clear how to deploy the airbags. Taxis in London often feature face-to-face seating, though that is less common in the USA. Will this be possible under these regulations?

The rules also call for unmanned vehicles to absorb energy like existing vehicles. I don’t know if this is a requirement on unusual vehicle design for regular cars or not. (If it were, it would have prohibited SUVs with their high bodies that can cause a bad impact with a low-body sports-car.)

Consumer Education and Training

This seems like another mild goal, but we don’t want a world where you can’t ride in a taxi unless you are certified as having taking a training course. Especially if it’s one for which you have very little to do. These rules are written more for people buying a car (for whom training can make sense) than those just planning to be a passenger.

Registration and Certification

This section imagines labels for drivers. It’s pretty silly and not very practical. Is a car going to have a sticker saying “This car can drive itself on Elm St. south of Pine, or on highway 101 except in Gilroy?” There should be another way, not labels, that this is communicated, especially because it will change all the time.

Post-Crash Behavior

This set is fairly reasonable — it requires a process describing what you do to a vehicle after a crash before it goes back into service.

Federal, State and Local Laws

This section calls for a detailed plan on how to assure compliance with all the laws. Interestingly, it also asks for a plan on how the vehicle will violate laws that human drivers sometimes violate. This is one of the areas where regulatory effort is necessary, because strictly cars are not allowed to violate the law — doing things like crossing the double-yellow line to pass a car blocking your path.  read more »

NHTSA Regulations part 3: Data Sharing, Privacy, Safety, Security and HMI

After my initial reactions and Overall Analysis here is a point by point consideration of the elements from NHTSA’s 15 point certification list for robocars. See also the second half and the whole series

Let’s dig in:

Data Recording and Sharing

These regulations require a plan about how the vehicle keep logs around any incident (while following privacy rules.) This is something everybody already does — in fact they keep logs of everything for now — since they want to debug any problems they encounter. NHTSA wants the logs to be available to NHTSA for crash investigation.

NHTSA also wants recordings of positive events (the system avoided a problem.)

Most interesting is a requirement for a data sharing plan. NHTSA wants companies to share their logs with their competitors in the event of incidents and important non-incidents, like near misses or detection of difficult objects.

This is perhaps the most interesting element of the plan, but it has seen some resistance from vendors. And it is indeed something that might not happen at scale without regulation. Many teams will consider their set of test data to be part of their crown jewels. Such test data is only gathered by spending many millions of dollars to send drivers out on the roads, or by convincing customers or others to voluntarily supervise while their cars gather test data, as Tesla has done. A large part of the head-start that leaders have in this field is the amount of different road situations they have been able to expose their vehicles to. Recordings of mundane driving activity are less exciting and will be easier to gather. Real world incidents are rare and gold for testing. The sharing is not as golden, because each vehicle will have different sensors, located in different places, so it will not be easy to adapt logs from one vehicle directly to another. While a vehicle system can play its own raw logs back directly to see how it performs in the same situation, other vehicles won’t readily do that.

Instead this offers the ability to build something that all vendors want and need, and the world needs, which is a high quality simulator where cars can be tested against real world recordings and entirely synthetic events. The data sharing requirement will allow the input of all these situations into the simulator, so every car can test how it would have performed. This simulation will mostly be at the “post perception level” where the car has (roughly) identified all the things on the road and is figuring out what to do with them, but some simulation could be done at lower levels.

These data logs and simulator scenarios will create what is known as a regression test suite. You test your car in all the situations, and every time you modify the software, you test that your modifications didn’t break something that used to work. It’s an essential tool.

In the history of software, there have been shared public test suites (often sourced from academia) and private ones that are closely guarded. For some time, I have proposed that it might be very useful if there were a a public and open source simulator environment which all teams could contribute scenarios to, but I always expected most contributions would come from academics and the open source community. Without this rule, the teams with the most test miles under their belts might be less willing to contribute.

Such a simulator would help all teams and level the playing field. It would allow small innovators to even build and test prototype ideas entirely in simulator, with very low cost and zero risk compared to building it in physical hardware.

This is a great example of where NHTSA could use its money rather than its regulatory power to improve safety, by funding the development of such test tools. In fact, if done open source, the agencies and academic institutions of the world could fund a global one. (This would face opposition from companies hoping to sell test tools, but there will still be openings for proprietary test tools.)


This section demands a privacy policy. I’m not against that, though of course the history of privacy policies is not a great one. They mostly involve people clicking “I agree” to things they don’t read. More important is the requirement that vendors be thinking about privacy.

The requirement for user choice is an interesting one, and it conflicts with the logging requirements. People are wary of technology that will betray them in court. Of course, as long as the car is not a hybrid car that mixes human driving with self-driving, and the passenger is not liable in an accident, there should be minimal risk to the passenger from accidents being recorded.

The rules require that personal information be scrubbed from any published data. This is a good idea but history shows it is remarkably hard to do properly.  read more »

Detailed analysis of NHTSA robocar regulations: Overview

The recent Federal Automated Vehicles Policy is long. (My same-day analysis is here and the whole series is being released.) At 116 pages (to be fair, less than half is policy declarations and the rest is plans for the future and associated materials) it is much larger than many of us were expecting.

The policy was introduced with a letter attributed to President Obama, where he wrote:

There are always those who argue that government should stay out of free enterprise entirely, but I think most Americans would agree we still need rules to keep our air and water clean, and our food and medicine safe. That’s the general principle here. What’s more, the quickest way to slam the brakes on innovation is for the public to lose confidence in the safety of new technologies. Both government and industry have a responsibility to make sure that doesn’t happen. And make no mistake: If a self-driving car isn’t safe, we have the authority to pull it off the road. We won’t hesitate to protect the American public’s safety.

This leads in to an unprecedented effort to write regulations for a technology that barely exists and has not been deployed beyond the testing stage. The history of automotive regulation has been the opposite, and so this is a major change. The key question is what justifies such a big change, and the cost that will come with it.

Make no mistake, the cost will be real. The cost of regulations is rarely known in advance but it is rarely small. Regulations slow all players down and make them more cautious — indeed it is sometimes their goal to cause that caution. Regulations result in projects needing “compliance departments” and the establishment of procedures and legal teams to assure they are complied with. In almost all cases, regulations punish small companies and startups more than they punish big players. In some cases, big players even welcome regulation, both because it slows down competitors and innovators, and because they usually also have skilled governmental affairs teams and lobbying teams which are able to subtly bend the regulations to match their needs.

This need not even be nefarious, though it often is. Companies that can devote a large team to dealing with regulations, those who can always send staff to meetings and negotiations and public comment sessions will naturally do better than those which can’t.

The US has had a history of regulating after the fact. Of being the place where “if it’s not been forbidden, it’s permitted.” This is what has allowed many of the most advanced robocar projects to flourish in the USA.

The attitude has been that industry (and startups) should lead and innovate. Only if the companies start doing something wrong or harmful, and market forces won’t stop them from being that way, is it time for the regulators to step in and make the errant companies do better. This approach has worked far better than the idea that regulators would attempt to understand a product or technology before it is deployed, imagine how it might go wrong, and make rules to keep the companies in line before any of them have shown evidence of crossing a line.

In spite of all I have written here, the robocar industry is still young. There are startups yet to be born which will develop new ideas yet to be imagined that change how everybody thinks about robocars and transportation. These innovative teams will develop new concepts of what it means to be safe and how to make things safe. Their ideas will be obvious only well after the fact.

Regulations and standards don’t deal well with that. They can only encode conventional wisdom. “Best practices” are really “the best we knew before the innovators came.” Innovators don’t ignore the old wisdom willy-nilly, they often ignore it or supersede it quite deliberately.

What’s good?

Some players — notably the big ones — have lauded these regulations. Big players, like car companies, Google, Uber and others have a reason to prefer regulations over a wild west landscape. Big companies like certainty. They need to know that if they build a product, that it will be legal to sell it. They can handle the cost of complex regulations, as long as they know they can build it.  read more »

Critique of NHTSA's newly released regulations

The long awaited list of recommendations and potential regulations for Robocars has just been released by NHTSA, the federal agency that regulates car safety and safety issues in car manufacture. Normally, NHTSA does not regulate car technology before it is released into the market, and the agency, while it says it is wary of slowing down this safety-increasing technology, has decided to do the unprecedented — and at a whopping 115 pages.

Broadly, this is very much the wrong direction. Nobody — not Google, Uber, Ford, GM or certainly NHTSA — knows the precise form of these cars will have when deployed. Almost surely something will change from our existing knowledge today. They know this, but still wish to move. Some of the larger players have pushed for regulation. Big companies like certainty. They want to know what the rules will be before they invest. Startups thrive better in the chaos, making up the rules as we go along.

NHTSA hopes to define “best practices” but the best anybody can do in 2016 is lay down existing practices and conventional wisdom. The entirely new methods of providing safety that are yet to be invented won’t be in such a definition.

The document is very detailed, so it will generate several blog posts of analysis. Here I present just initial reactions. Those reactions are broadly negative. This document is too detailed by an order of magnitude. Its regulations begin today, but fortunately they are also accepting public comment. The scope of the document is so large, however, that it seems extremely unlikely that they would scale back this document to the level it should be at. As such, the progress of robocar development in the USA may be seriously negatively affected.

Vehicle performance guidelines

The first part of the regulations is a proposed 15 point safety standard. It must be certified (by the vendor) that the car meets these standards. NHTSA wants the power, according to an Op-Ed by no less than President Obama, to be able to pull cars from the road that don’t meet these safety promises.

  • Data Recording and Sharing
  • Privacy
  • System Safety
  • Vehicle Cybersecurity
  • Human Machine Interface
  • Crashworthiness
  • Consumer Education and Training
  • Registration and Certification
  • Post-Crash Behavior
  • Federal, State and Local Laws
  • Operational Design Domain
  • Object and Event Detection and Response
  • Fall Back (Minimal Risk Condition)
  • Validation Methods
  • Ethical Considerations

As you might guess, the most disturbing is the last one. As I have written many times, the issue of ethical “trolley problems” where cars must decide between killing one person or another are a philosophy class tool, not a guide to real world situations. Developers should spend as close to zero effort on these problems as possible, since they are not common enough to warrant special attention, if not for our morbid fascination with machines making life or death decisions in hypothetical situations. Let the policymakers answer these questions if they want to; programmers and vendors don’t.

For the past couple of years, this has been a game that’s kept people entertained and ethicists employed. The idea that government regulations might demand solutions to these problems before these cars can go on the road is appalling. If these regulations are written this way, we will delay saving lots of real lives in the interest of debating which highly hypothetical lives will be saved or harmed in ridiculously rare situations.

NHTSA’s rules demand that ethical decisions be “made consciously and intentionally.” Algorithms must be “transparent” and based on input from regulators, drivers, passengers and road users. While the section makes mention of machine learning techniques, it seems in the same breath to forbid them.

Most of the other rules are more innocuous. Of course all vendors will know and have little trouble listing what roads their car works on, and they will have extensive testing data on the car’s perception system and how it handles every sort of failure. However, the requirement to keep the government constantly updated will be burdensome. Some vehicles will be adding streets to their route map literally ever day.

While I have been a professional privacy advocate, and I do care about just how the privacy of car users is protected, I am frankly not that concerned during the pilot project phase about how well this is done. I do want a good regime — and even the ability to do anonymous taxi — so it’s perhaps not too bad to think about these things now, but I suspect these regulations will be fairly meaningless unless written in consultation with independent privacy advocates. The hard reality is that during the test phase, even a privacy advocate has to admit that the cars will need to make very extensive recordings of everything they can, so that any problems encountered can be studied and fixed and placed into the test suite.

50 state laws

NHTSA’s plan has been partially endorsed by the self-driving coalition for safer streets (whose members include big players Ford, Google, Volvo, Uber and Lyft.) They like the fact that it has guidance for states on how to write their regulations, fearing that regulations may differ too much state to state. I have written that having 50 sets of rules may not be that bad an idea because jurisdictional competition can allow legal innovation and having software load new parameters as you drive over a border is not that hard.

In this document NHTSA asks the states to yield to the DOT on regulating robocar operation and performance. States should stick to registering cars, rules of the road, safety inspections and insurance. States will regulate human drivers as before, but the feds will regulate computer drivers.

States will still regulate testing, in theory, but the test cars must comply with the federal regulations.

New Authorities

A large part of the document just lists the legal justifications for NHTSA to regulate in this fashion and is primarily for policy wonks. Section 4, however, lists new authorities NHTSA is going to seek in order to do more regulation.

Some of the authorities they may see include:

  • Pre-market safety assurance: Defining testing tools and methods to be used before selling
  • Pre-market approval authority: Vendors would need approval from NHTSA before selling, rather than self-certifying compliance with the regulations
  • Hybrid approaches of pre-market approval and self-certification
  • Cease and desist authority: The ability to demand cars be taken off the road
  • Exemption authority: An ability to grant rue exemptions for testing
  • Post-sale authority to regulate software changes
  • Much more

Other quick notes:

  • NHTSA has abandoned their levels in favour of the SAE’s. The SAE’s were almost identical of course, with the addition of a “level 5” which is meaningless because it requires a vehicle that can drive literally everywhere, and there is not really a commercial reason to make a car at present that can do that.
  • NHTSA is now pushing the acronym “HAV” (highly automated vehicle) as yet another contender in the large sea of names people use for this technology. (Self-driving car, driverless car, autonomous vehicle, automated vehicle, robocar etc.)

This was my preliminary report. More analysis can be found under the NHTSA tag.

Actually, 50 different state regulations is not that bad an idea

At the recent AUVSI/TRB conference in San Francisco, there was much talk of upcoming regulation, particularly from NHTSA. Secretary of Transportation Foxx and his NHTSA staff spoke with just vague hints about what might come in the proposals due this fall. Generally, they said good things, namely that they are wary of slowing down the development of the technology. But they said things that suggest other directions.

Secretary Foxx began by agreeing that the past history of automotive driving systems was quite different. Regulations have typically been written years or decades after technologies have been deployed. And the written regulations have tended to involve standards which the vendors self-certify their compliance with. What this means is that there is not a government test center which confirms a car complies with the rules in the safety standards. Instead, the vendor certifies they are following the rules. If they certify falsely, that can get them in trouble later with regulators and more importantly in lawsuits. It’s by far the best approach unless the vendors have shown that they can’t be trusted in spite of the fear of these actions.

But Foxx said that they were going to go against that history and consider “pre-market regulation.” Regular readers will know I think that’s an unwise idea, and so do many regulators, who admit that we don’t know enough about the final form of the technology to regulate yet.

Fortunately it was also suggested that NHTSA’s new documents would be more in the form of “guidance” for states. Many states ask NHTSA to help them write self-driving car regulations. Which gets us to a statement that was echoed by several speakers to justify federal regulation, “Nobody wants 50 different regulations” on these cars.

At first, that seems obvious. I mean, who would want it to be that complex? Clearly it’s simpler to have to deal with only one set of regulations. But while that’s true, it doesn’t mean it’s the best idea. They are overestimating the work involved in dealing with different regulations, and underestimating the value of having the ability for states to experiment with new ideas in regulation, and the value of having states compete on who can write the best regulations.

If regulations differed so much between states as to require different hardware, that makes a stronger case. But most probably we are talking about rules that affect the software. That can be annoying, but it’s just annoying. A car can switch what rules it follows in software when it crosses a border with no trouble. It already has to, just because of the different rules of the road found in every state, and indeed every city and even every street! Having a few different policies state by state is no big addition.

Jurisdictional competition is a good thing though, particularly with emerging technologies. Let some states do it wrong, and others do it better, at least at the start. Le them compete to bring the technology first to their region, and invent new ideas on how to regulate something the world has never seen. Over time these regulations can be normalized. By the time people are making 10s of millions of robocars, that normalization will make more sense. But most vendors only plan to deploy in just a few states to begin, anyway. If a state feels its regulations are making it harder for the cars to spread to its cities, it can copy the rules of the other state it likes best.

The competition assures any mistake is localized — and probably eventually fixed. If California follows through with banning unmanned operation, as they have proposed, Texas has said it won’t.

I noted that if the hardware has to change, that’s more of an issue. It’s still not that much of an issue, because cars that operate as taxi services will probably never leave their base state. Most of them will have limited operational zones, and except in cities that straddle state borders, they won’t even leave town, let alone leave the state. Some day, the cars might do interstate trips, but even then you can solve this by having one car drive you to the border and then transfer to a car for the other state. Annoying, but only slight, and not a deal-breaker on the service. A car you own and take on road trips is a different story.

The one way having different state regulations would be a burden would be if there were 50 different complex certification processes to go through. Today, the federal government regulates how cars are made and the safety standards for that. The states regulate how cars operate on the roads. Robocars do blur that line, because how they are made controls how they drive.

For now, I still believe the tort system — even though it differs in all 50 states — is the best approach to regulation. It already has all developers highly paranoid about safety. When the day comes for certification, a unified process could make sense, but that day is still very far away. But for the regulations of just how these cars will operate, it might make sense to keep that with the states, even though it’s now part of the design of the car rather than the intentions of a human driver.

In time, unified regulations will indeed be desired by all, once we’ve had the time to figure out what the right regulations should be. But today? It’s too soon. Innovation requires variety.

Syndicate content