Wind or solar to filter the pool

One of the biggest issues with wind and solar is that they are intermittent, and so either need storage or grid-tie to work. There really is no good storage, and generally storage-based systems are highly wasteful, throwing away most of the power you generate because you want to keep the storage near full. Grid-tie is the only green choice, but it's expensive and requires expensive inverters and permits and more.

Topic: 

UK, Michigan & Sweden push robocars, Toyota doesn't -- and Amazon delivery drones

The past few weeks have been rife with governments deciding to throw support behind robocars.

I wrote earlier about the plan for pods in Milton Keynes, NW of London. The UK has also endowed a a £10m prize fund to build vehicles and for a town to adapt to them. This will be managed in part by the Oxford team which has built a self-driving Wildcat and Nissan LEAF.

Topic: 

International roaming, T-mobile and local SIMs

Back from 5 weeks of international travel, I continue to seek the best solution in my quest for reasonably priced data service when outside the USA.

Data has become a must for me when on the road. In spite of the fact that we all lived without it a decade ago, I find it very frustrating if it's not available (or priced at $15,000 per gigabyte, which is the typical default roaming rate.) It's how I find directions, food, tourist info and keep in touch with others.

For a while my normal practice, if in a country for more than a few days, has been to purchase a local SIM card, and of course to have an unlocked GSM phone. Usually local SIMs are now available with 500mb to 1gb of data for $10 to $20. There are various web sites that list the local data providers to help you choose. The best prices tend to come from the MVNOs -- not the main incumbent carriers -- but even the big carriers tend to have decent prepaid deals. These usually come with some voice minutes and texting. This is useful though I don't do a lot of voice minutes when overseas due to time zones. I use them to reach local friends, book hotels, check restaurants, and with my companion. Annoyingly, though I have bought many of these SIMs, even for data, it's not nearly as nice and easy as it should be. A large fraction of the time, something goes wrong.

The hassles of local SIMs

  • It can often be a pain to research and pick the right carrier, and then to find one of their stores, and get the purchase done. This was particularly true in the past, when selling a SIM to a random foreigner was not a common event at many stores. You have to go out of your way, and deal with people who don't speak your language. Some providers put a store in the arrival area of the airport, which is great, though they tend to be the more expensive cards.
  • Until you get the new SIM, you are faced with very expensive roaming.
  • Research does matter. In England (where language is not a problem) some carriers give you your data bundle free when you put 10 pounds on the card, others charge you those 10 pounds, leaving you with no voice minutes.
  • Once you get the card, you often have to deal with web sites, menus and voice prompts not in your language. Setting up the voicemail is already a pain, and is far worse if you can't understand the prompts.
  • Fixing odd problems is difficult in an unfamiliar system. My Orange card had a package of 500mb in it for 10 Euros, (great) but kept draining the money I put on it, leaving it unusable for making calls and texts, and though I can read and speak modest French, I was unable to find the cause.
  • There are always issues of prepaid cards for short use. If you put too much in the card, it's wasted unless you are coming back soon. If you don't put enough in, you have to run around buying and adding refills -- again with prompts not in your language. Carriers would do well to let you add a lot to the card, and then refund it to you on request. This would make me put more in the card, and use the phone more, so it's a win for them.
  • As noted, balances usually expire quickly, and cards often expire after 6 months or a year if not used. Though some cards are lasting longer.
  • In some countries, they won't let you refill from a credit card, which means you must buy cards at local shops with cash, and always have a card handy -- then throw away the spare cards when you leave, wasted.
  • You need to learn and give a new phone number to people. You may be able to forward your old number, but often that comes at a high cost. As a plus, you make it much cheaper for locals to call and text you, while making it more expensive for people back home to reach you (unless you forward and eat many times that cost.) You do get the "advantage" that incoming calls and texts are free.
  • Text messages generally do not forward, so you will not see those unless you keep 2 phones -- and pay roaming.
  • Calls back home may or may not be quite expensive, but usually are much less than roaming rates on your home SIM.
  • If you move to a different country, you usually have to do it all over again -- shop again, and have a new number. In Europe, where it is common to hop from country to country this becomes a real issue. Some prepaid plans allow tolerable voice roaming in other countries, though data roaming tends to still be expensive on prepaid, in spite of a European order to reduce it.
  • You are going to pay $10 to $20 plus your time for all this, and if all you want is to do a few voice minutes and some texts and keep your data usage to wifi, you might not come out ahead on a short trip.

T-Mobile's new solution

Topic: 

Enough with the Trolley problem, already

More and more often in mainstream articles about robocars, I am seeing an expression of variations of the classic 1960s "Trolley Problem." For example, this article on the Atlantic website is one of many. In the classical Trolley problem, you see a train hurtling down the track about to run over 5 people, and you can switch the train to another track where it will kill one person.

Topic: 
Tags: 

Locking devices down too hard, and other tales of broken phones

One day I noticed my nice 7 month old Nexus 4 had a think crack on the screen. Not sure where it came from, but my old Nexus One had had a similar crack and when it was on you barely saw it and the phone worked fine, so I wasn't scared -- until I saw that the crack stopped the digitizer from recognizing my finger in a band in the middle of the screen. A band which included dots from my "unlock" code.

And so, while the phone worked fine, you could not unlock it. That was bad news because with 4.3, the Android team had done a lot of work to make sure unlocked phones are secure if people randomly pick them up. As I'll explain in more detail, you really can't unlock it. And while it's locked, it won't respond to USB commands either. I had enabled debugging some time ago, but either that doesn't work unlocked or that state had been reset in a system update.

No unlocking meant no backing up the things that Google doesn't back up for you. It backs up a lot, these days, but there's still dozens of settings, lots of app data, logs of calls and texts, your app screen layout and much more that's lost.

I could repair the phone -- but when LG designed this phone they merged the digitizer and screen, so the repair is $180, and the parts take weeks to come in at most shops. Problem is, you can now buy a new Nexus 4 for just $199 (which is a truly great price for an unlocked phone) or the larger model I have for $249. Since the phone still has some uses, it makes much more sense to get a new one than to repair, other than to get that lost data. But more to the point, it's been 7 months and there are newer, hotter phones out there! So I eventually got a new phone.

But first I did restore functionality on the N4 by doing a factory wipe. That's possible without the screen, and the wiped phone has no lock code. It's actually possible to use quite a bit of the phone. Typing is a pain since a few letters on the right don't register but you can get them by rotating. You would not want to use this long term, but many apps are quite usable, such as maps and in particular eBook reading -- for cheap I have a nice small eBook reader. And you can make and receive calls. (Even on the locked phone I could receive a call somebody made to me -- it was the only thing it could do.) In addition, by connecting a bluetooth mouse and keyboard, I could use the phone fully -- this was essential for setting the phone up again, where the lack of that region on the touchpad would have made it impossible.

One of my security maxims is "Every security system ends up blocking legitimate users, often more than it blocks out the bad guys." I got bitten by that.

The robocar and the bicycle

I've written about the issues relating to robocars and walking before. On one hand, some people may find themselves hardly ever walking with convenient door-to-door robocar transportation. Others may find the robocars may enable walking by allowing one-way waking trips, or enabling trips that that allow drive-walk-drive (eliminating short driving trips done just to save the trouble of walking back to get the car.)

Topic: 

Will EV recharging soar to very high costs?

I recently read a complaint by an EV driver that the charging station at De Anza College cost 55 cents/kwh. The national average price for electricity is around 10 cents, and at that price a typical electric car costs under 3 cents/mile for electricity. Gasoline costs about 8 cents/mile in a Prius, about 13 cents in a decent non-hybrid and 18 cents/mile in the average car which gets 22mpg. (At least here in California.) But the college's charger's electricity is almost 15 cents/mile in most electric sedans today, which is more than the gasoline in any gasoline car an eco-conscious person is likely to buy. (California Tier III electricity is 30 cents/kwh and thus almost as much.)

The price of charging stations varies wildly. A lot of them are free still, financed by other motivations. Tesla's superchargers are free -- effectively part of the cost of the car. It's not uncommon for parking lots to offer free charging if you pay for parking, since parking tends to cost a fair bit more. After all, you won't put more than 20kwh in a Leaf (and probably a lot less) and that costs just $2 at the average grid price.

This got me thinking of how the economics of charging will work in the future when electric cars and charging stations are modestly plentiful. While the national grid average is 10 cents, in many places heavy users can pay a lot more, though there are currently special deals to promote electric cars. Often the daytime cost for commercial customers is quite a bit higher, while the night is much lower. Charging stations at offices and shops will do mostly day charging; ones in homes and hotels will do night charging.

Unlike gasoline pumping, which takes 5 minutes, charging also involves parking. This is not just because charging takes several hours, but because that is enough time that customers won't want to come and move their car once full, and so they will take the space for their full parking duration, which may be 8 or more hours.

Charging stations are all very different in utility. While every gasoline station near your route is pretty much equivalent to you, your charging station is your parking spot, and as such only the ones very close to your destination are suitable. While a cheap gas station 2 miles off your route would have a line around the block, a free charging stations 2 miles away from your destination is not that attractive! More to the point, the charging point close to your destination is able to command a serious premium. That have a sort of monopoly (until charging stations become super common) on charging at the only location of value to you.

Put another way, when buying gasoline, I can choose from all the stations in town. When picking an EV charge, I can only choose from stations with an available spot a short walk from my destination. Such a monopoly will lead to high prices in a market where the stations are charging (in dollars :-) what the market will bear.

The market will bear a lot. While the electricity may be available cheap, EV owners might be easily talked into paying as much for electricity as gasoline buyers do, on a per-mile basis. The EV owners will be forgetting the economics of the electric car -- you pay the vast bulk of your costs up front for the battery, and the electrical costs are intended to be minor. If the electricity cost rivals that of gasoline, the battery cost is now completely extra.

Naturally, EV owners will do at least half their charging at home, where they negotiate the best rate. But this could be worse, as they might well be talked into looking at the average. They could pay 80 cents/kwh in the parking lot and 10 cents/kwh at home, and figure they are getting away with 45 cents and "still beating gasoline." They would be fooling themselves, but the more people willing to fool themselves, the higher prices will go.

There is another lack of choice here. For many EV drivers, charging is not optional. Unless they have easy range to get back home or to another charging place they will spend lots of time, you must charge if you are low and the time opportunity presents itself. To not do so is either impossible (you won't get home) or very foolish (you constrain what your EV can do.) When you face a situation where you must charge, and you must charge in a particular place, the potential for price gouging becomes serious.

The RV of the future

Over the years, particularly after Burning Man, I've written posts about how RVs can be improved. This year I did not use an regular RV but rather a pop-up camping trailer. However, I thought it was a good time to summarize a variety of the features I think should be in every RV of the future.

Smart Power

We keep talking about smart power and smart grids but power is expensive and complex when camping, and RVs are a great place for new technologies to develop.

To begin with, an RV power system should integrate the deep cycle house batteries, a special generator/inverter system, smart appliances and even the main truck engine where possible.

Today the best small generators are inverter based. Rather than generating AC directly from an 1800rpm motor and alternator, they have a variable speed engine and produce the AC via an inverter. These are smaller, more efficient, lighter and quieter than older generators, and produce cleaner power. Today they are more expensive, but not more expensive than most RV generators. RV generators are usually sized at 3,600 to 4,000 watts in ordinary RVs -- that size dictated by the spike of starting up the air conditioner compressor when something else, like the microwave is running.

An inverter based generator combined with the RV's battery bank doesn't have to be that large. It can draw power for the surge of starting a motor from the battery. The ability to sustain 2,000 watts is probably enough, with a few other tricks. Indeed, it can provide a lot of power even with the generator off, though the generator should auto-start if the AC is to be used, or the microwave will be used for a long time.

By adding a data network, one can be much more efficient with power. For example, the microwave could just turn off briefly when the thermostat wants to start the AC's compressor, or even the fans. The microwave could also know if it's been told to cook for 30 seconds (no need to run generator) or 10 minutes (might want to start it.) It could also start the generator in advance of cooling need.

If the master computer has access to weather data, it could even decide what future power needs for heating fans and air conditioning will be, and run the generator appropriately. With a GPS database, it could even know the quiet times of the campsite it's in and respect them.

A modern RV should have all-LED lighting. Power use is so low on those that the lights become a blip in power planning. Only the microwave, AC and furnace fan would make a difference. Likewise today's TVs, laptops and media players which all draw very few watts.

A smart power system could even help plugging into shore power, particularly a standard 15a circuit. Such circuits are not enough to start many ACs, or to run the AC with anything else. With surge backup from the battery, an RV could plug into an ordinary plug and act almost like it had a high power connection.

To go further, for group camping, RVs should have the ability to form an ad-hoc power grid. This same ability is already desired in the off-grid world, so it need not be developed just for RVs. RVs able to take all sorts of input power could also eventually get smart power from RV campsites. After negotiation, a campsite might offer 500v DC at 12 amps instead of 115v AC, allowing the largest dual-AC RVs to plug into small wires.

Mercedes and Vislab release videos of their real-road tests

Videos have been released on some real-world tests of robocars. The most notable is from Mercedes.

As a nice reflection on the past, Mercedes drove the 100km route done by Bertha Benz in the first automotive road trip 125 years ago. You will also find that this alternate video is much better at talking about the technical details of the vehicle.

Topic: 

Going beyond the vacation program with dynamic status

I'm back from Burning Man, and this year, for the first time in a while, we didn't get internet up in our camp, so I only did occasional email checks while wandering other places. And thus, of course, there are many hundred messages backed up in my box to get to. I will look at the most important but some will just be ignored or discarded.

We all know it's getting harder and harder to deal with email backlog after travel, even connected travel. If you don't check in it gets even worse. Vacation autoreplies can help a little, but I think they are no longer enough.

Topic: 

The new car stereo is -- the noise cancelling headphone

Probably the most expensive add-on that people get in their cars today is the stereo. Long ago, cars often came without stereos and there was a major aftermarket. The aftermarket is still here but most people elect for factory stereos which fit in seamlessly with the car and often cost a huge amount of money.

Topic: 

No, the car sharing aspect of robocars isn't as exciting as people hope

Frequently, in reporting on robocars, it is often cited that one of their key benefits will be the way they enable car sharing, greatly reducing the number of cars that need to exist to serve the population. It is sometimes predicted that we'll need to make fewer cars, which is good for the environment.

It is indeed true -- robotaxi service, with cars that deliver themselves and drop you off, does greatly enable car sharing. But from the standpoint of modern car sharing, it may enable it too well, and we may end up having to manufacture more cars, not fewer.

Today's car sharing companies report statistics that they replace around 13 privately owned cars for every car in the carsharing fleet. Some suggest it's even as high as 20.

This number is impossible for average drivers, however. The average car is driven 12,000 miles/year. To replace 13 average cars would require a vehicle that was actively driving, not just signed out, 11 hours/day and each vehicle would wear out in 1-2 years.

Three things are happening.

  • Carsharing is replacing the more marginal, less used vehicles. A household replaces a 2nd or 3rd car. Carsharing is almost always used by people who do not commute by car.
  • Carsharing is often considerably less convenient than a private car. It discourages driving, pushing its users into other modes of transport, or selecting for customers who can do that.
  • Related to that, carsharing shows the true cost of car ownership and makes it incremental. That cost is around $20/hour, and people rethink trips when they see the full cost laid out per mile or per hour. With private cars, they ignore most of the cost and focus only on the gasoline, if that.

The "problem" with robocars is that they're not going to be worse than having a private car. In many ways they will be better. So they will do very little of the discouragement of car use caused by present day carshare models. The "dark secret" of carsharing is that it succeeds so well at replacing cars because of its flaws, not just its virtues.

Robotic taxis can be priced incrementally, with per-mile or per-hour costs, and these costs will initially be similar to the mostly unperceived per-mile or per-hour costs of private car ownership, though they will get cheaper in the future. This revelation of the price will discourage some driving, though robotaxi companies, hoping to encourage more business, will likely create pricing models which match the way people pay for cars (such as monthly lease fees with only gasoline costs during use) to get people to use more of the product.

There is an even stronger factor when it comes to robotaxis. A hard-working robotaxi will indeed serve many people, and as such it will put on a lot of miles every year. It will thus wear out much faster, and be taken out of service within 4-5 years. This is the case with today's human driven taxicabs, which travel about 60,000 miles/year in places like New York.

The lifetime of a robotaxi will be measured almost exclusively in miles or engine-hours, not years. The more miles people travel, the more vehicles will need to be built. It doesn't matter how much people are sharing them.

The core formula is simple.

Cars made = Vehicle Miles Travelled (VMT) / Car lifetime in miles

The amount of sharing of vehicles is not a factor in this equation, other than when it affects VMT.

Today the average car lasts 200,000 miles in California. To be clear, if you have 8,000 customers and they will travel two billion miles in 20 years (that's the average) then they are going to need 8,000 cars over those years. It almost doesn't matter if you serve them with their own private car, and it lasts all 20 years, or if you get 2,000 cars and they serve 4 people each on average and wear out after 5 years.

Topic: 

Augmented Reality as documentation and the "context" button

I've been a little skeptical of many augmented reality apps I've seen, feeling they were mostly gimmick and not actually useful.

I'm impressed by this new one from Audi where you point your phone (iPhone only, unfortunately) at a feature on your car, and you get documentation on it. An interesting answer to car user manuals that are as thick as the glove compartment and the complex UIs they describe.

Self-driving cars, autonomous vehicles, driverless cars and robocars

Our technology is having trouble with settling on a name. That's OK before it's mainstream but will eventually present a problem. When people in the field are polled on what name they like, there is no clear winner. Let's look at some of the commonly used candidates:

Driverless Cars

Recently, this has become the most common term used in the press. There is a "Driverless Car Summit" and the Wikipedia page has used that name for some time.

In spite of this popularity, the term is very rarely used by people actually building the vehicles. Attendees at the "Driverless Car Summit" when polled all said they dislike it. Until recently, the most common news story about a driverless car would say, "then the driverless car rolled down the hill and careened into the other lane, hitting a tree."

My personal view is that this term is like "horseless carriage." Long ago the most remarkable thing about the automobile was that it had no horse. Here it's the lack of driver (or at least lack of action by the driver.) Of course, these cars have something driving them, but it's a computer system. While this term is most popular, I am confident it will fade away and seem quaint, like horseless carriage did.

Alain Kornhauser has proposed that Driverless Car refer only to cars capable of fully-unmanned operation, and those that need an occasional human be called self-driving. As yet this has not caught on.

Self-driving cars

This term is popular among developers of the cars. Its main problem is that it's too long to be a popular term. The acronym SDC is a reasonable one. In web hits, this is tied with Driverless Cars, but falls behind that name in searches and news mentions.

Autonomous Vehicles

This term was most popular in the early years, though it is most commonly found in research environments and in the military sphere. In the military they also use "unmanned ground vehicle" -- another term too unwieldy for the public --though they usually refer to remote controlled vehicles, not self-driving ones.

Annoyingly, the acronym "AV" has another popular meaning today. Most of the terms here are too long to become common use terms, and so will be turned into acronyms or shortened, but this one has an acronym problem.

Automated Road Vehicle

This term has minor traction, almost entirely due to the efforts of Steve Shladover of UC Berkeley. In his view, the word autonomous is entirely misused here and the correct term is automated. Roboticists tend to differ -- they have been using "autonomous" to mean "not remote controlled" for many years. There are two meanings of autonomous in common use. One is to be independent of direct control (which these cars are) and the other one, "self-governing" is the one Steve has the issue with. As a member of the program committee for TRB's conference on the area, he has pushed the "automated" name and given it some traction.

Unfortunately, to roboticists, "automated" is how you describe a dishwasher or a pick-and-place robot; it's a lower level of capability. I don't expect this terminology to gain traction among them.

Highly Automated Vehicle (HAV) and Automated Driving Systems (ADS)

For some time, HAV was the term used in NHTSA proposed regulations. It never caught on. The new regulations use ADS, it is unclear if this will catch on -- the acronym of course is an English word so it can't easily be searched for.

Robocars

I selected this term for these pages for a variety of reasons. It was already in modest use thanks to a Science Channel documentary on the DARPA challenge called "robocars."

  • Talking to teams, they usually just called their vehicle "the robot" or "the car."
  • It is short, easy to say, and clear about what it means
  • It is distinct and thus can easily be found in online searches
  • It had some amount of existing use, notably as the title of a documentary on the Science Channel about the DARPA challenges

However, it is doing poorly in popularity and only has about 21,000 web pages using it, so I may need to switch away from it as well if a better term appears. Today it reminds people too much of robotics, and the trend is to move away from that association.

On the other hand, no other term satisfies the criteria above, which I think are very good criteria.

Topic: 

The numbers say let Robocars exceed the speed limit

I'm often asked whether robocars will keep themselves to the speed limit and refuse to go faster, unlike cruise controls which let the driver set the automated speed. In many countries, the majority of human drivers routinely exceed the limit which could present issues. On the other hand, vendors may fear liability over programming their cars to do this, or even programming them to allow their human overlord to demand it.

Topic: 

Pages